Inherited epidermolysis bullosa (EB) is a highly heterogeneous group of rare genetic disorders, characterized by defective epithelial cell adhesion leading to mucocutaneous fragility and blister formation following minimal trauma. The current EB classification distinguishes four major types based upon the plane of cleavage within the skin, reflecting the underlying molecular abnormality: EB simplex (EBS), junctional EB, dystrophic EB (DEB) and Kindler EB. During the past 30 years, sixteen EB causative genes have been identified, contributing not only to progressively unveil the molecular basis of this large group of diseases and to advance our understanding of cutaneous physiopathology, but also adding novel knowledge on EB clinical complexity. Syndromic EB subtypes showing primary involvement of different extracutaneous organs and tissues, from muscles to heart, lung and kidney, are at present distinguished. In addition, severe subtypes with extensive mucocutaneous lesions are characterized by a range of disabling complications, comprising recurrent infections, chronic wounds with scarring sequelae and progressive tissue fibrosis and stiffness, increased susceptibility to aggressive skin squamous cell carcinomas, as well as by multisystem involvement with chronic anemia and growth delay. As a consequence, EB patients affected with more severe subtypes have a poor quality of life and reduced life expectancy. However, the pathomechanisms underlying EB primary manifestations and complications have been only partially unraveled, and disease treatment remains merely symptomatic. A further step of complexity in EB pathomechanisms is given by the epigenetics: the intricate set of biological processes standing above the fundamental genetics-based “DNA instructions” and involved in shaping health and disease conditions in a pervasive manner. In EB, epigenetics processes could underlie unexplored molecular bases of the disease, or could modulate, in cooperation with environmental factors, the expected genotypephenotype correlations determining different clinical manifestations in patients carrying the same mutations. For these reasons, epigenetic events, including the microRNA activity, are emerging as attractive research topics in the EB field with important perspective implications in EB diagnosis, prognosis and therapy. The aim of this PhD research project has been to get novel insights into pathomechanisms underlying two EB subtypes. In particular, we focused on: (i) recessive DEB (RDEB) as the most disabling EB subtype marked by severe 5 complications and reduced life-span, and (ii) a recently described EBS subtype, due to mutations in the ubiquitin ligase Kelch-like family member 24 (KLHL24) as a peculiar and poorly characterized syndromic subtype with skin and cardiac involvement. RDEB is caused by mutations in the COL7A1 gene encoding type VII collagen, a cutaneous basement membrane component essential for epidermal–dermal adhesion. Hallmarks of the disease are unremitting blistering and chronic wounds with severe inflammation and fibrosis. MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression, implicated in a multitude of biological processes including fibrosis onset in different tissues and organs. However, the role of miRNAs in RDEB skin fibrosis is almost unexplored. Our aim was to identify miRNAs deregulated in primary RDEB skin fibroblasts (RDEBFs) and to characterize their function in RDEB fibrosis. Quantitative real-time polymerase chain reaction (qRTPCR) was used to screen RDEBFs for expression levels of a group of miRNAs deregulated in hypertrophic scars and keloids, pathological conditions with abnormal wound healing and fibrosis. We found that the miR-143/145 cluster is upregulated in RDEBFs compared with fibroblasts from healthy subjects. In vitro functional assays revealed that RDEBFs transfected with a miR-145- 5p inhibitor present attenuated fibrotic traits of contraction, proliferation and migration, accompanied by reduced expression of the contractile proteins αsmooth muscle actin and transgelin. These effects were associated with upregulation of Krüppel-like factor 4 transcriptional repressor and downregulation of Jagged1, a known inducer of fibrosis. In conclusion, our results highlight the profibrotic role of miR-145-5p and its regulatory networks in RDEB, shedding light on novel disease pathomechanisms and targets for future therapeutic approaches. The novel syndromic EBS subtype is due to dominant KLHL24 mutations (EBS-KLHL24) which are always localized in the gene translation initiation codon and lead to the formation of a shorter protein form lacking the first 28 amino acids at the N-terminal extremity (ΔN28-KLHL24). This protein portion contains one or more auto-ubiquitination site(s), and thus its absence confers to the truncated KLHL24 an increased stability to the proteasomemediated degradation. The skin phenotype of EBS-KLHL24 is typified by the constant presence of large denuded skin areas at birth with a rapid amelioration of skin fragility already in infancy, pointing to a key role of the ubiquitin ligase KLHL24 during epidermal development. However, the basal keratin (K) 14, the main bona fide KLHL24-dependent degradation target, is similarly expressed in fetal and post-natal life and wouldn’t explain the 6 striking congenital skin manifestations and the rapid amelioration after birth. In addition to constitutive keratins, acquired by keratinocytes during embryonic and fetal skin development, fetal epidermal cells present a specific subset of keratins (fetal keratins, FET-KRTs). Our aim was to investigate FET-KRTs as putative additional substrates of KLHL24, implicated in the development of fetal skin defects in EBS-KLHL24. To this purpose, normal human fetal keratinocytes (NHK-FET) were transduced with lentiviral vectors expressing either WT-KLHL24 or ΔN28-KLHL24 and we investigated the expression levels of selected keratins. We found that the FET-KRTs K7, K8, K17 and K18 are markedly degraded in NHK-FET transduced with ΔN28- KLHL24, while K14 showed only a modest decrease in ΔN28-KLHL24 cells in our experimental conditions. FET-KRTs degradation was mediated via the ubiquitin-proteasome system. Heat stress, a well-known regulator of keratin turnover, induced a further decrease of FET-KRTs in ΔN28-KLHL24 NHKFET and a disorganization of K17 network, as evaluated by immunofluorescence examination. In addition, ΔN28-KLHL24 NHK-FET showed increased migration properties, a feature linked to an aberrant cytoskeleton organization, similar to the augmented migration observed in keratinocytes with mutations in basal keratin genes KRT5 and KRT14. Our findings revealed that a large set of keratins, ranging from those expressed in the fetal life to K14, are degraded by proteasome in NHK-FET transduced with the mutant truncated KLHL24 form. These results candidate KLHL24 as a pan-keratin regulator. However, further studies are needed to verify whether one or more FET-KRTs are direct target(s) of KLHL24 and to better characterize the regulatory loops underlying KLHL24 function in fetal versus adult keratinocytes in basal and stress conditions. Finally, we are currently performing the characterization of the in vitro phenotype (e.g. resilience of the cytoskeleton to heat-stress, proliferative and migratory properties) and the expression analysis of a larger set of keratins in primary keratinocytes from EBS-KLHL24 patients and healthy subjects in basal and stress conditions. These findings will provide important information on the possible biological functions of KLHL24 in patient keratinocytes carrying KLHL24 mutations and could contribute to unveil novel KLHL24 pathogenic effects in patient keratinocytes during post-natal life.
L’epidermolisi bollosa ereditaria (EB) è un gruppo estremamente eterogeneo di malattie genetiche rare, caratterizzate da deficit di adesione delle cellule epiteliali che causano fragilità mucocutanea e formazione di lesioni bollose in seguito a traumatismi anche minimi. L’attuale classificazione dell’EB distingue 4 tipi principali in base al piano di clivaggio all’interno della cute, riflettendo l’anomalia molecolare sottostante: EB semplice (EBS), EB giunzionale (EBG), EB distrofica (EBD) ed EB di Kindler (EBK). Negli ultimi 30 anni, sono stati identificati sedici geni causativi delle EB, contribuendo non solo a chiarire progressivamente le basi molecolari di questo vasto gruppo di malattie e a migliorare la nostra comprensione della fisiopatologia cutanea, ma anche ad acquisire nuove conoscenze sulla complessità clinica dell’EB. Attualmente vengono infatti distinti sottotipi sindromici di EB caratterizzati dal coinvolgimento primario di diversi organi e tessuti extracutanei, che vanno dai muscoli al cuore, ai polmoni e ai reni. Inoltre, i sottotipi severi di EB con lesioni mucocutanee estese sono contraddistinti da una serie di complicazioni invalidanti, tra cui infezioni ricorrenti, presenza di ulcerazioni croniche con formazione di cicatrici e progressiva fibrosi e rigidità del tessuto, maggiore suscettibilità ai carcinomi squamocellulari della cute, così come da un coinvolgimento multisistemico con anemia cronica e ritardo della crescita. Di conseguenza, i pazienti EB affetti dai sottotipi più gravi hanno una scarsa qualità della vita e una ridotta aspettativa di vita. Tuttavia, i meccanismi patogenetici sottostanti le manifestazioni primarie e le complicazioni dell’EB sono solo parzialmente noti e il trattamento della malattia rimane puramente sintomatico. Un ulteriore livello di complessità nei meccanismi patogenetici dell’EB è dato dall’epigenetica: l’intricato insieme di processi biologici che stanno al di sopra delle fondamentali “istruzioni del DNA” basate sulla genetica e che sono ubiquitariamente coinvolti nel modellare le condizioni di salute e malattia. Nell’EB la regolazione epigenetica dell’espressione genica potrebbe essere implicata in nuovi processi molecolari sottostanti la malattia e le sue complicanze, o potrebbe modulare, insieme ai fattori ambientali, le correlazioni genotipo-fenotipo attese determinando manifestazioni cliniche diverse in pazienti portatori delle stesse mutazioni. Per queste ragioni, gli eventi epigenetici, compresa l’attività dei microRNA, stanno emergendo come argomenti di ricerca interessanti nel campo dell’EB con importanti implicazioni diagnostiche, prognostiche e terapeutiche. L’obiettivo di questo progetto di ricerca di dottorato è stato quello di ottenere nuove conoscenze sui meccanismi patogenetici alla base di due sottotipi di EB. In particolare, ci siamo concentrati: (i) sulla EBD recessiva 8 (EBDR) in quanto rappresenta il sottotipo di EB più invalidante caratterizzato da gravi complicanze e da una durata ridotta della vita, e (ii) su un sottotipo di EBS recentemente descritto, dovuto a mutazioni nel gene codificante per l’ubiquitina ligasi Kelch-like family member 24 (KLHL24) in quanto sottotipo sindromico peculiare e ancora poco caratterizzato con interessamento cutaneo e cardiaco. La EBDR è causata da mutazioni nel gene COL7A1 codificante per il collagene di tipo VII, un componente della membrana basale cutanea essenziale per l’adesione dermo-epidermica. Segni distintivi di questa malattia sono la formazione continua di bolle e di ulcerazioni croniche accompagnate da infiammazione e fibrosi severe. I microRNA (miRNA) sono regolatori post-trascrizionali dell’espressione genica, implicati in una moltitudine di processi biologici tra cui l’insorgenza della fibrosi in diversi tessuti e organi. Tuttavia, il ruolo dei miRNA nella fibrosi della pelle dell’EBDR è quasi inesplorato. Il nostro obiettivo è stato quello di identificare i miRNA differenzialmente espressi nei fibroblasti cutanei primari (EBDRF) e di caratterizzarne la funzione nella fibrosi dell’EBDR. La real-time PCR quantitativa (qRT-PCR) è stata usata per esaminare nei EBDRF i livelli di espressione di un gruppo di miRNA già noti essere deregolati nelle cicatrici ipertrofiche e nei cheloidi, condizioni patologiche con guarigione anomala della ferita e fibrosi. Abbiamo trovato che il cluster miR-143/145 è upregolato nei EBDRF rispetto ai fibroblasti dei soggetti sani. Saggi funzionali in vitro hanno rivelato che i EBDRF trasfettati con un inibitore del miR-145- 5p presentano una riduzione dei processi fibrotici di contrazione, proliferazione e migrazione, accompagnati da una diminuita espressione delle proteine contrattili α-smooth muscle actin e transgelin. Questi effetti sono associati con l’aumento del repressore trascrizionale Krüppel-like factor 4 e la down-regolazione di Jagged1, un noto induttore di fibrosi. In conclusione, i nostri risultati evidenziano il ruolo pro-fibrotico del miR-145-5p e dei relativi network regolatori nell’EBDR e fanno luce su nuovi meccanismi patogenetici della malattia e bersagli per futuri approcci terapeutici. Il nuovo sottotipo sindromico di EBS è dovuto a mutazioni dominanti in KLHL24 (EBS-KLHL24), che sono sempre localizzate nel codone di inizio della traduzione e portano alla formazione di una forma proteica più corta, mancante dei primi 28 aminoacidi all’estremità N-terminale (ΔN28- KLHL24). Questa porzione contiene uno o più siti di auto-ubiquitinazione, la cui assenza nella forma mutata conferisce a KLHL24 una maggiore stabilità alla degradazione mediata dal sistema del proteasoma. Il fenotipo cutaneo dell’EBS-KLHL24 è caratterizzato dalla costante presenza di zone estese di 9 cute disepitelizzata alla nascita con un rapido miglioramento della fragilità cutanea già nell’infanzia, indicando un ruolo chiave dell’ubiquitina ligasi KLHL24 durante lo sviluppo epidermico. Tuttavia, la cheratina basale 14 (K14), il principale bersaglio bona fide di degradazione KLHL24-dipendente, è espressa in modo comparabile nella vita fetale e post-natale e la sua degradazione non spiegherebbe le gravi manifestazioni cutanee congenite e il rapido miglioramento dopo la nascita. Oltre alle cheratine costitutive espresse dai cheratinociti durante lo sviluppo embrionale e fetale, le cellule epidermiche fetali presentano un sottoinsieme specifico di cheratine (le cheratine fetali, FET-KRT). Il nostro obiettivo è stato quello di studiare le FET-KRT come presunti substrati aggiuntivi di KLHL24, implicati nello sviluppo dei difetti della pelle fetale nell’EBS-KLHL24. A tal fine, abbiamo trasdotto cheratinociti fetali umani normali (NHK-FET) con vettori lentivirali che esprimevano la forma wild-type (WT-KLHL24) o quella mutata (ΔN28- KLHL24) e studiato i livelli di espressione delle cheratine selezionate. Abbiamo osservato una marcata degradazione delle FET-KRT K7, K8, K17 e K18 nei NHK-FET trasdotti con ΔN28-KLHL24, mentre, nelle nostre condizioni sperimentali, K14 ha mostrato solo una modesta diminuzione nelle cellule esprimenti ΔN28-KLHL24. Abbiamo inoltre verificato che la degradazione delle cheratine fetali è mediata dal sistema ubiquitinaproteasoma. Lo stress da calore, un noto regolatore del turnover delle cheratine, ha indotto un’ulteriore diminuzione delle FET-KRT nei NHK-FET trasdotti con ΔN28-KLHL24 e una disorganizzazione del network di K17, come valutato tramite immunofluorescenza. Inoltre, i NHK-FET trasdotti con ΔN28-KLHL24 hanno mostrato un aumento delle proprietà migratorie, una caratteristica legata ad un’organizzazione citoscheletrica aberrante come osservato nei cheratinociti con mutazioni nei geni delle cheratine basali KRT5 e KRT14. I nostri risultati hanno rivelato che diverse cheratine che vanno da quelle espresse nella vita fetale a K14, sono degradate via proteasoma nei NHK-FET trasdotti con la forma tronca mutata di KLHL24. Questi risultati candidano KLHL24 come pan-regolatore delle cheratine. Tuttavia, sono necessari ulteriori studi per verificare se una o più FET-KRT siano o meno target diretti di KLHL24 e per caratterizzare i loop regolatori sottostanti la funzione di KLHL24 nei cheratinociti fetali rispetto a quelli adulti in condizioni basali e di stress. Infine, stiamo caratterizzando il fenotipo in vitro (e.g. capacità del citoscheletro di resistere al danno da calore, potenziale proliferativo e migratorio) e valutando i livelli di espressione di un più ampio gruppo di cheratine nei cheratinociti primari da pazienti EBS-KLHL24 e individui sani in condizioni basali e dopo stress da calore. Questi risultati 10 forniranno importanti informazioni sulle eventuali funzioni biologiche di KLHL24 anche in cheratinociti da pazienti che esprimono la forma mutata di KLHL24, contribuendo a svelare nuovi potenziali effetti patogenetici a carico del cheratinocita nella vita post-natale.
Novel insights into epidermolysis bullosa pathomechanisms
LOGLI, ELENA
2020
Abstract
Inherited epidermolysis bullosa (EB) is a highly heterogeneous group of rare genetic disorders, characterized by defective epithelial cell adhesion leading to mucocutaneous fragility and blister formation following minimal trauma. The current EB classification distinguishes four major types based upon the plane of cleavage within the skin, reflecting the underlying molecular abnormality: EB simplex (EBS), junctional EB, dystrophic EB (DEB) and Kindler EB. During the past 30 years, sixteen EB causative genes have been identified, contributing not only to progressively unveil the molecular basis of this large group of diseases and to advance our understanding of cutaneous physiopathology, but also adding novel knowledge on EB clinical complexity. Syndromic EB subtypes showing primary involvement of different extracutaneous organs and tissues, from muscles to heart, lung and kidney, are at present distinguished. In addition, severe subtypes with extensive mucocutaneous lesions are characterized by a range of disabling complications, comprising recurrent infections, chronic wounds with scarring sequelae and progressive tissue fibrosis and stiffness, increased susceptibility to aggressive skin squamous cell carcinomas, as well as by multisystem involvement with chronic anemia and growth delay. As a consequence, EB patients affected with more severe subtypes have a poor quality of life and reduced life expectancy. However, the pathomechanisms underlying EB primary manifestations and complications have been only partially unraveled, and disease treatment remains merely symptomatic. A further step of complexity in EB pathomechanisms is given by the epigenetics: the intricate set of biological processes standing above the fundamental genetics-based “DNA instructions” and involved in shaping health and disease conditions in a pervasive manner. In EB, epigenetics processes could underlie unexplored molecular bases of the disease, or could modulate, in cooperation with environmental factors, the expected genotypephenotype correlations determining different clinical manifestations in patients carrying the same mutations. For these reasons, epigenetic events, including the microRNA activity, are emerging as attractive research topics in the EB field with important perspective implications in EB diagnosis, prognosis and therapy. The aim of this PhD research project has been to get novel insights into pathomechanisms underlying two EB subtypes. In particular, we focused on: (i) recessive DEB (RDEB) as the most disabling EB subtype marked by severe 5 complications and reduced life-span, and (ii) a recently described EBS subtype, due to mutations in the ubiquitin ligase Kelch-like family member 24 (KLHL24) as a peculiar and poorly characterized syndromic subtype with skin and cardiac involvement. RDEB is caused by mutations in the COL7A1 gene encoding type VII collagen, a cutaneous basement membrane component essential for epidermal–dermal adhesion. Hallmarks of the disease are unremitting blistering and chronic wounds with severe inflammation and fibrosis. MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression, implicated in a multitude of biological processes including fibrosis onset in different tissues and organs. However, the role of miRNAs in RDEB skin fibrosis is almost unexplored. Our aim was to identify miRNAs deregulated in primary RDEB skin fibroblasts (RDEBFs) and to characterize their function in RDEB fibrosis. Quantitative real-time polymerase chain reaction (qRTPCR) was used to screen RDEBFs for expression levels of a group of miRNAs deregulated in hypertrophic scars and keloids, pathological conditions with abnormal wound healing and fibrosis. We found that the miR-143/145 cluster is upregulated in RDEBFs compared with fibroblasts from healthy subjects. In vitro functional assays revealed that RDEBFs transfected with a miR-145- 5p inhibitor present attenuated fibrotic traits of contraction, proliferation and migration, accompanied by reduced expression of the contractile proteins αsmooth muscle actin and transgelin. These effects were associated with upregulation of Krüppel-like factor 4 transcriptional repressor and downregulation of Jagged1, a known inducer of fibrosis. In conclusion, our results highlight the profibrotic role of miR-145-5p and its regulatory networks in RDEB, shedding light on novel disease pathomechanisms and targets for future therapeutic approaches. The novel syndromic EBS subtype is due to dominant KLHL24 mutations (EBS-KLHL24) which are always localized in the gene translation initiation codon and lead to the formation of a shorter protein form lacking the first 28 amino acids at the N-terminal extremity (ΔN28-KLHL24). This protein portion contains one or more auto-ubiquitination site(s), and thus its absence confers to the truncated KLHL24 an increased stability to the proteasomemediated degradation. The skin phenotype of EBS-KLHL24 is typified by the constant presence of large denuded skin areas at birth with a rapid amelioration of skin fragility already in infancy, pointing to a key role of the ubiquitin ligase KLHL24 during epidermal development. However, the basal keratin (K) 14, the main bona fide KLHL24-dependent degradation target, is similarly expressed in fetal and post-natal life and wouldn’t explain the 6 striking congenital skin manifestations and the rapid amelioration after birth. In addition to constitutive keratins, acquired by keratinocytes during embryonic and fetal skin development, fetal epidermal cells present a specific subset of keratins (fetal keratins, FET-KRTs). Our aim was to investigate FET-KRTs as putative additional substrates of KLHL24, implicated in the development of fetal skin defects in EBS-KLHL24. To this purpose, normal human fetal keratinocytes (NHK-FET) were transduced with lentiviral vectors expressing either WT-KLHL24 or ΔN28-KLHL24 and we investigated the expression levels of selected keratins. We found that the FET-KRTs K7, K8, K17 and K18 are markedly degraded in NHK-FET transduced with ΔN28- KLHL24, while K14 showed only a modest decrease in ΔN28-KLHL24 cells in our experimental conditions. FET-KRTs degradation was mediated via the ubiquitin-proteasome system. Heat stress, a well-known regulator of keratin turnover, induced a further decrease of FET-KRTs in ΔN28-KLHL24 NHKFET and a disorganization of K17 network, as evaluated by immunofluorescence examination. In addition, ΔN28-KLHL24 NHK-FET showed increased migration properties, a feature linked to an aberrant cytoskeleton organization, similar to the augmented migration observed in keratinocytes with mutations in basal keratin genes KRT5 and KRT14. Our findings revealed that a large set of keratins, ranging from those expressed in the fetal life to K14, are degraded by proteasome in NHK-FET transduced with the mutant truncated KLHL24 form. These results candidate KLHL24 as a pan-keratin regulator. However, further studies are needed to verify whether one or more FET-KRTs are direct target(s) of KLHL24 and to better characterize the regulatory loops underlying KLHL24 function in fetal versus adult keratinocytes in basal and stress conditions. Finally, we are currently performing the characterization of the in vitro phenotype (e.g. resilience of the cytoskeleton to heat-stress, proliferative and migratory properties) and the expression analysis of a larger set of keratins in primary keratinocytes from EBS-KLHL24 patients and healthy subjects in basal and stress conditions. These findings will provide important information on the possible biological functions of KLHL24 in patient keratinocytes carrying KLHL24 mutations and could contribute to unveil novel KLHL24 pathogenic effects in patient keratinocytes during post-natal life.File | Dimensione | Formato | |
---|---|---|---|
PHD THESIS LOGLI ELENA XXXIII CICLO.pdf
accesso solo da BNCF e BNCR
Dimensione
6.41 MB
Formato
Adobe PDF
|
6.41 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/211247
URN:NBN:IT:UNIROMA2-211247