The growing understanding of hydrological sciences, combined with the advent of new technologies, provides an unprecedented way to describe natural disasters. Inland floods primarily arise from pluvial and fluvial inundations, distinct hazardous phenomena often regulated and managed differently across various European countries. These events result from diverse causative mechanisms that govern the occurrence and severity of flooding. Improving flood risk management requires a deeper understanding of flood-inducing processes associated with different flood types, a goal that can be achieved through advancements in flood modeling. State-of-the-art involves multiple strategies and several frameworks to model, often separately, the causes and effects of floods. Part of hydrology research focuses on describing catchment functioning by estimating flood-inducing processes (causes), such as multiple runoff generation mechanisms. Nonetheless, modeling floods also involves a branch of hydrodynamic research, which primarily identifies floodable areas affected by varying degrees and sources of hazard at local scale (effects). To effectively reduce the risks associated with different flood types, the last European legislation emphasizes the need for coordinated measures at the catchment scale. This requires bridging scientific dichotomies, by integrating the cause-effect relationships of floods into unified catchment-scale modeling frameworks. Addressing this gap, this thesis introduces methodological advancements and novel approaches in the field of catchment-scale flood modeling, following three interconnected research lines. First, a tracer-aided 2D hydrodynamic framework was developed to clearly differentiate flood extents originating from pluvial and fluvial inundations at the catchment scale. Second, a Runoff-On-Grid modeling approach was designed to couple hydrological and hydrodynamic modeling, enabling a joint understanding of flood-generating processes and flood impacts into a cohesive framework. Finally, perceptual modeling based on multiple working hypotheses, was employed to test the realism of competing hydrological-hydrodynamic model structures, identify dominant runoff generation mechanisms, and determine the most likely catchment behavior in response to consecutive storm events. The research provides critical insights and promising solutions to advance catchment-scale flood forecasting, essential pillars to support effective flood risk management. The proposed modeling frameworks enhance the scientific foundation for simulating and disentangling the various flood-inducing processes and distinct sources of flood hazard. These findings extend beyond the specific models and case studies presented herein, offering significant potential for broader applicability and scalability in the future.
La crescente comprensione delle scienze idrologiche, unita all’avvento di nuove tecnologie, offre un modo senza precedenti per descrivere i disastri naturali. Nell’entroterra le alluvioni derivano principalmente da inondazioni pluviali e fluviali, fenomeni di pericolosità distinti che vengono spesso regolamentati e gestiti in modo diverso nei vari paesi europei. Questi eventi sono il risultato di diversi meccanismi causali che determinano l’occorrenza e la severità delle inondazioni. Migliorare la gestione del rischio idraulico richiede una comprensione più approfondita dei processi che le generano, associati alle diverse tipologie di alluvioni. Questo obiettivo può essere raggiunto attraverso progressi nella modellazione delle alluvioni. Lo stato dell’arte include strategie e approcci diversi per modellare, spesso separatamente, le cause e gli effetti delle inondazioni. Parte della ricerca idrologica si concentra sulla descrizione del funzionamento dei bacini idrografici stimando i processi che generano le inondazioni (cause), come i multipli meccanismi di generazione del deflusso. Tuttavia, la modellazione delle piene coinvolge anche una branca della ricerca idrodinamica che identifica principalmente le aree allagabili colpite da vari gradi e fonti di pericolo a scala locale (effetti). Per ridurre efficacemente i rischi associati ai diversi tipi di inondazioni, la più recente legislazione Europea sottolinea la necessità di misure coordinate a scala di bacino idrografico. Ciò richiede di colmare le dicotomie scientifiche, integrando le relazioni causa-effetto delle alluvioni in un unico quadro di modellazione a scala di bacino. Affrontando questa lacuna, questa tesi introduce progressi metodologici e nuovi approcci nel campo della modellazione delle alluvioni a scala di bacino, seguendo tre linee di ricerca interconnesse. In primo luogo, è stato sviluppato un quadro idrodinamico 2D tracer-aided per differenziare chiaramente le estensioni delle alluvioni originate da inondazioni pluviali e fluviali a scala di bacino. Successivamente, è stato sviluppato un approccio di modellazione Runoff-On-Grid per integrare la modellazione idrologica e idrodinamica, consentendo una comprensione congiunta dei processi che generano le inondazioni e dei loro impatti in un ambiente di lavoro unificato. Infine, è stata impiegata la modellazione percettiva basata su ipotesi multiple di lavoro, per testare il realismo di diverse strutture modellistiche idrologiche-idrodinamiche, identificare i meccanismi predominanti di generazione del deflusso e determinare il comportamento più probabile del bacino in risposta a eventi di tempesta consecutivi. La ricerca fornisce spunti cruciali e soluzioni promettenti per avanzare nella previsione delle alluvioni a scala di bacino, pilastri essenziali per supportare una gestione efficace del rischio alluvionale. I quadri di modellazione proposti rafforzano le basi scientifiche per simulare e distinguere i vari processi che inducono le alluvioni e le diverse fonti di pericolosità. Questi risultati vanno aldilà dei modelli specifici e i casi studio presentati in questa tesi, offrendo un potenziale significativo per una più ampia applicabilità e scalabilità in futuro.
Quadro di modellazione idrologica-idrodinamica a scala di bacino per distinguere i processi inducenti le alluvioni e le fonti di pericolosità
PERRINI, PASQUALE
2025
Abstract
The growing understanding of hydrological sciences, combined with the advent of new technologies, provides an unprecedented way to describe natural disasters. Inland floods primarily arise from pluvial and fluvial inundations, distinct hazardous phenomena often regulated and managed differently across various European countries. These events result from diverse causative mechanisms that govern the occurrence and severity of flooding. Improving flood risk management requires a deeper understanding of flood-inducing processes associated with different flood types, a goal that can be achieved through advancements in flood modeling. State-of-the-art involves multiple strategies and several frameworks to model, often separately, the causes and effects of floods. Part of hydrology research focuses on describing catchment functioning by estimating flood-inducing processes (causes), such as multiple runoff generation mechanisms. Nonetheless, modeling floods also involves a branch of hydrodynamic research, which primarily identifies floodable areas affected by varying degrees and sources of hazard at local scale (effects). To effectively reduce the risks associated with different flood types, the last European legislation emphasizes the need for coordinated measures at the catchment scale. This requires bridging scientific dichotomies, by integrating the cause-effect relationships of floods into unified catchment-scale modeling frameworks. Addressing this gap, this thesis introduces methodological advancements and novel approaches in the field of catchment-scale flood modeling, following three interconnected research lines. First, a tracer-aided 2D hydrodynamic framework was developed to clearly differentiate flood extents originating from pluvial and fluvial inundations at the catchment scale. Second, a Runoff-On-Grid modeling approach was designed to couple hydrological and hydrodynamic modeling, enabling a joint understanding of flood-generating processes and flood impacts into a cohesive framework. Finally, perceptual modeling based on multiple working hypotheses, was employed to test the realism of competing hydrological-hydrodynamic model structures, identify dominant runoff generation mechanisms, and determine the most likely catchment behavior in response to consecutive storm events. The research provides critical insights and promising solutions to advance catchment-scale flood forecasting, essential pillars to support effective flood risk management. The proposed modeling frameworks enhance the scientific foundation for simulating and disentangling the various flood-inducing processes and distinct sources of flood hazard. These findings extend beyond the specific models and case studies presented herein, offering significant potential for broader applicability and scalability in the future.File | Dimensione | Formato | |
---|---|---|---|
PhDthesis_PasqualePerrini.pdf
embargo fino al 07/05/2026
Dimensione
13.13 MB
Formato
Adobe PDF
|
13.13 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/212512
URN:NBN:IT:UNIBA-212512