Haemophilia A is an X-linked recessive bleeding disorder caused by mutations in the F8 gene, resulting in deficiency or dysfunction of coagulation Factor VIII (FVIII). A major clinical complication in severe cases is the development of neutralizing alloantibodies, known as inhibitors, which undermine treatment efficacy and increase morbidity. This doctoral thesis uses a multidisciplinary approach by combining computational biology, bioinformatics, and high-throughput immunological assays, to investigate the mechanisms of inhibitor development and identify predictive biomarkers for clinical risk stratification. The first study employs a novel IgG epitope mapping method using a random peptide phage-display library in the SIPPET cohort. Mimotope-variation analysis (MVA) was used to characterize FVIII-specific antibody repertoires, and predictive models based on LASSO logistic regression and random forest algorithms achieved strong performance (C-statistics ~0.78–0.80), supporting their utility in pre-treatment risk assessment. The second study explores molecular mimicry by aligning FVIII mimotopes with pathogen-derived B-cell epitopes from the Immune Epitope Database (IEDB). Although some homologies were observed, no significant enrichment was found, providing no support for molecular mimicry as a driver of inhibitor formation. The third study involves genome-wide DNA methylation analysis to identify epigenetic differences associated with inhibitor risk. Differentially methylated CpG sites were found in genes linked to immune regulation and tolerance, suggesting epigenetic contributions to FVIII immunogenicity. Overall, this thesis demonstrates the value of integrative computational approaches in elucidating immune responses in Haemophilia A and contributes to the development of predictive tools and personalized treatment strategies in translational medicine.
L'emofilia A è un disturbo emorragico recessivo legato al cromosoma X, causato da mutazioni nel gene F8, che determinano una carenza o un malfunzionamento del fattore VIII (FVIII) della coagulazione. Una delle principali complicazioni cliniche nei casi gravi è lo sviluppo di alloanticorpi neutralizzanti, noti come inibitori, che compromettono l'efficacia del trattamento e aumentano la morbidità. Questa tesi di dottorato adotta un approccio multidisciplinare, combinando biologia computazionale, bioinformatica e saggi immunologici ad alta capacità, per indagare i meccanismi dello sviluppo degli inibitori e identificare biomarcatori predittivi per la stratificazione del rischio clinico. Il primo studio impiega un metodo innovativo di mappatura degli epitopi IgG basato su una libreria di peptidi casuali espressi tramite fagi (phage display) nella coorte SIPPET. L’analisi della variazione dei mimotopi (MVA) è stata utilizzata per caratterizzare i repertori anticorpali specifici per FVIII, e i modelli predittivi basati su regressione logistica LASSO e algoritmi di foreste casuali hanno mostrato una buona performance (C-statistic ~0.78–0.80), confermando la loro utilità nella valutazione del rischio pre-trattamento. Il secondo studio esplora l'ipotesi della mimica molecolare allineando i mimotopi di FVIII con epitopi delle cellule B derivati da patogeni, presenti nell’Immune Epitope Database (IEDB). Sebbene siano state osservate alcune omologie, non è stato rilevato un arricchimento significativo, escludendo la mimica molecolare come meccanismo determinante nella formazione degli inibitori. Il terzo studio prevede un’analisi della metilazione del DNA su scala genomica per identificare differenze epigenetiche associate al rischio di sviluppo di inibitori. Sono stati individuati siti CpG metilati in modo differenziale in geni coinvolti nella regolazione immunitaria e nella tolleranza, suggerendo un possibile contributo epigenetico all’immunogenicità del FVIII. Nel complesso, questa tesi dimostra il valore degli approcci computazionali integrati nel chiarire le risposte immunitarie nell'emofilia A e contribuisce allo sviluppo di strumenti predittivi e strategie terapeutiche personalizzate nell’ambito della medicina traslazionale.
COMPUTATIONAL APPROACHES IN STUDYING INHIBITOR DEVELOPMENT IN HAEMOPHILIA A PATIENTS
CHAND, HIMANI
2025
Abstract
Haemophilia A is an X-linked recessive bleeding disorder caused by mutations in the F8 gene, resulting in deficiency or dysfunction of coagulation Factor VIII (FVIII). A major clinical complication in severe cases is the development of neutralizing alloantibodies, known as inhibitors, which undermine treatment efficacy and increase morbidity. This doctoral thesis uses a multidisciplinary approach by combining computational biology, bioinformatics, and high-throughput immunological assays, to investigate the mechanisms of inhibitor development and identify predictive biomarkers for clinical risk stratification. The first study employs a novel IgG epitope mapping method using a random peptide phage-display library in the SIPPET cohort. Mimotope-variation analysis (MVA) was used to characterize FVIII-specific antibody repertoires, and predictive models based on LASSO logistic regression and random forest algorithms achieved strong performance (C-statistics ~0.78–0.80), supporting their utility in pre-treatment risk assessment. The second study explores molecular mimicry by aligning FVIII mimotopes with pathogen-derived B-cell epitopes from the Immune Epitope Database (IEDB). Although some homologies were observed, no significant enrichment was found, providing no support for molecular mimicry as a driver of inhibitor formation. The third study involves genome-wide DNA methylation analysis to identify epigenetic differences associated with inhibitor risk. Differentially methylated CpG sites were found in genes linked to immune regulation and tolerance, suggesting epigenetic contributions to FVIII immunogenicity. Overall, this thesis demonstrates the value of integrative computational approaches in elucidating immune responses in Haemophilia A and contributes to the development of predictive tools and personalized treatment strategies in translational medicine.File | Dimensione | Formato | |
---|---|---|---|
phd_unimi_R13656.pdf
accesso aperto
Dimensione
2.44 MB
Formato
Adobe PDF
|
2.44 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/212892
URN:NBN:IT:UNIMI-212892