This research focuses on the synthesis and optimization of metal oxide nanostructures for applications in gas sensors and solid oxide fuel cells (SOFCs). Rooted in green chemistry principles, the study minimizes the use of harmful chemicals and reduces energy consumption during both synthesis and device operation. The first part of the study investigates the cost-effective synthesis of WO3 nanowires using a self-catalyzed vapor-solid method, eliminating the need for expensive catalysts like gold. The WO3 nanowires demonstrated competitive CO gas sensing performance with good selectivity. While the gold-assisted VLS method yielded higher sensitivity, as expected due to the presence of gold, the self-catalytic VS method remains a promising, sustainable alternative. Additionally, the method was conducted on an alumina substrate, which does not promote nanowire orientation, demonstrating the applicability of this approach for gold-free applications. The second part of the research investigates the optimization of the synthesis of α-Fe2O3, ZnO, and NiO with different porous morphologies via polyol method, using ethylene glycol as a solvent. Controlled aggregation and clustering of nanoparticles, along with the formation of porous structures, enhanced the gas sensing performance toward NO2 by potentially offering abundant reactive sites and accelerating the diffusion of NO2, which improves sensing performance. This approach also improved selectivity over H2, NH3, acetone, and ethanol. For the α-Fe2O3-based sensor, key parameters such as reaction temperature and annealing conditions were investigated to improve nanoparticle growth and sensor performance. The optimal sample, prepared at a 160 °C reaction temperature and a 700 °C annealing temperature (S-160-700), exhibited a remarkable NO2 response. It showed minimal degradation after 7 months of storage under environmental conditions, demonstrating long-term stability and high selectivity. ZnO-based sensors were fabricated by directly synthesizing ZnO, achieving a hexagonal wurtzite phase and hemispherical morphology. Additionally, an alternative approach was introduced for thermal treatment of powder after synthesis, by using the sensor’s heater contact for calcination the material during the sensor’s thermal stabilization process. This dual-purpose process, which occurs at 400-500 °C (within the annealing range for some materials), not only stabilizes the sensor but also supports material growth, improving morphology and sensing performance. This method is promising for other materials with similar thermal processing requirements. Nickel oxide synthesized using EG formed desert-rose-like structures with non-uniform clustering of sheet-like morphologies, influenced by the nucleation rate during synthesis and subsequent calcination. This morphology directly impacted the material's NO2 sensitivity at room temperature, making it a promising candidate for room-temperature sensors. Unlike other studies relying on complex strategies, composites, or chemicals, this simple approach using only the precursor and ethylene glycol offers an effective route to room-temperature sensing. Finally, some of the prepared metal oxide materials were integrated into SOFC applications by depositing an anode layer on a commercial planar cell already equipped with an electrolyte and cathode, using a simple deposition method. NiO synthesized with diethylene glycol solvent was used to prepare a NiO-GDC composite anode (60:40 ratio) to enhance electronic and ionic conductivity, while α-Fe2O3 was introduced as droplets on top of the NiO-GDC composite to explore its influence on catalytic activity and material interaction. As this was a preliminary study, the addition of droplets of the S160-700 α-Fe2O3 sample on top of NiO-GDC resulted in small improvements compared to the NiO-GDC anode alone.
Questa ricerca si concentra sulla sintesi e ottimizzazione di nanomateriali a base di ossidi metallici, con particolare attenzione alle loro applicazioni nella rilevazione di gas e nelle celle a combustibili basate su ossidi solidi (SOFCs). Radicato nei principi della chimica verde, lo studio si propone di minimizzare l'uso di sostanze chimiche dannose e ridurre il consumo energetico. La prima parte esplora la sintesi economica di nanofili di WO3 tramite il metodo vapore-solido (VS), eliminando la necessità di catalizzatori costosi come l'oro. Questo approccio non solo riduce i costi, ma si allinea anche ai principi di sostenibilità, dimostrando prestazioni promettenti nella rilevazione di monossido di carbonio (CO). La seconda parte della tesi esplora la sintesi di nanoparticelle di ossido di ferro (IONPs) utilizzando un semplice metodo di precipitazione, con il tè verde come agente riducente per minimizzare l'uso di sostanze chimiche pericolose. Lo studio si focalizza inoltre ad esaminare gli effetti dell'utilizzo del cloruro di ferro come precursore e glicole etilenico come solvente, osservando come una variazione delle temperature di reazione (160 °C, 180 °C e 200 °C) abbia un impatto sulle proprietà del materiale e sulle performance di rilevazione del biossido di azoto (NO2). I risultati rivelano che l'ossido di ferro sintetizzato a 160 °C mostra le migliori performance, suggerendo che temperature di reazione inferiori possano migliorare sia la funzionalità del materiale che l'efficienza energetica. Inoltre, gli esperimenti di ricottura dimostrano che potenzialmente è possibile ottimizzare ulteriormente il materiale per migliorare le prestazioni del sensore. La terza parte della ricerca esamina il doppio ruolo della stabilizzazione termica in nanostrutture di ZnO come alternativa efficiente dal punto di vista energetico alla ricottura tradizionale. Questo approccio comporta la formazione di nanoparticelle più sottili e omogenee, migliorando significativamente la performance nella rilevazione di NO₂, offrendo un metodo più semplice e a minor consumo energetico per la preparazione dei sensori. Infine, nell’ultima parte del lavoro sperimentale riportato in questa tesi, NiO è stato sintetizzato utilizzando il metodo del polialcol per valutarne il potenziale nella rilevazione di NO₂ a temperatura ambiente. Le nanostrutture di NiO sintetizzate con glicole etilenico hanno mostrato una risposta rapida e misurabile al NO₂, eliminando la necessità di riscaldamento esterno. Inoltre, NiO è stato combinato con ceria drogata gadolinio (GDC) per formare un materiale “cermet” da utilizzare come anodo per celle SOFC, con una particolare enfasi sulla riduzione dell'uso di sostanze chimiche e sulla semplificazione del processo di preparazione. L'aggiunta di α-Fe₂O₃ al composito NiO-GDC si riflette in un leggero aumento della tensione a circuito aperto e in un lieve incremento della densità di potenza di picco. In conclusione, questa tesi presenta una serie di approcci sostenibili per la sintesi di nanomateriali a base di ossidi metallici, offrendo soluzioni economiche ed efficienti dal punto di vista energetico, mantenendo al contempo elevate performance. I risultati evidenziano il potenziale di questi materiali per applicazioni nella rilevazione di gas e nell'energia, contribuendo all'avanzamento della nanotecnologia sostenibile.
ECO-SUSTAINABLE PREPARATION OF OXIDES AND INTEGRATION INTO RENEWABLE ENERGY DEVICES AND SENSORS
HAKKOUM, HADJER
2025
Abstract
This research focuses on the synthesis and optimization of metal oxide nanostructures for applications in gas sensors and solid oxide fuel cells (SOFCs). Rooted in green chemistry principles, the study minimizes the use of harmful chemicals and reduces energy consumption during both synthesis and device operation. The first part of the study investigates the cost-effective synthesis of WO3 nanowires using a self-catalyzed vapor-solid method, eliminating the need for expensive catalysts like gold. The WO3 nanowires demonstrated competitive CO gas sensing performance with good selectivity. While the gold-assisted VLS method yielded higher sensitivity, as expected due to the presence of gold, the self-catalytic VS method remains a promising, sustainable alternative. Additionally, the method was conducted on an alumina substrate, which does not promote nanowire orientation, demonstrating the applicability of this approach for gold-free applications. The second part of the research investigates the optimization of the synthesis of α-Fe2O3, ZnO, and NiO with different porous morphologies via polyol method, using ethylene glycol as a solvent. Controlled aggregation and clustering of nanoparticles, along with the formation of porous structures, enhanced the gas sensing performance toward NO2 by potentially offering abundant reactive sites and accelerating the diffusion of NO2, which improves sensing performance. This approach also improved selectivity over H2, NH3, acetone, and ethanol. For the α-Fe2O3-based sensor, key parameters such as reaction temperature and annealing conditions were investigated to improve nanoparticle growth and sensor performance. The optimal sample, prepared at a 160 °C reaction temperature and a 700 °C annealing temperature (S-160-700), exhibited a remarkable NO2 response. It showed minimal degradation after 7 months of storage under environmental conditions, demonstrating long-term stability and high selectivity. ZnO-based sensors were fabricated by directly synthesizing ZnO, achieving a hexagonal wurtzite phase and hemispherical morphology. Additionally, an alternative approach was introduced for thermal treatment of powder after synthesis, by using the sensor’s heater contact for calcination the material during the sensor’s thermal stabilization process. This dual-purpose process, which occurs at 400-500 °C (within the annealing range for some materials), not only stabilizes the sensor but also supports material growth, improving morphology and sensing performance. This method is promising for other materials with similar thermal processing requirements. Nickel oxide synthesized using EG formed desert-rose-like structures with non-uniform clustering of sheet-like morphologies, influenced by the nucleation rate during synthesis and subsequent calcination. This morphology directly impacted the material's NO2 sensitivity at room temperature, making it a promising candidate for room-temperature sensors. Unlike other studies relying on complex strategies, composites, or chemicals, this simple approach using only the precursor and ethylene glycol offers an effective route to room-temperature sensing. Finally, some of the prepared metal oxide materials were integrated into SOFC applications by depositing an anode layer on a commercial planar cell already equipped with an electrolyte and cathode, using a simple deposition method. NiO synthesized with diethylene glycol solvent was used to prepare a NiO-GDC composite anode (60:40 ratio) to enhance electronic and ionic conductivity, while α-Fe2O3 was introduced as droplets on top of the NiO-GDC composite to explore its influence on catalytic activity and material interaction. As this was a preliminary study, the addition of droplets of the S160-700 α-Fe2O3 sample on top of NiO-GDC resulted in small improvements compared to the NiO-GDC anode alone.File | Dimensione | Formato | |
---|---|---|---|
Tesi Hakkoum.pdf
embargo fino al 24/06/2027
Dimensione
9.98 MB
Formato
Adobe PDF
|
9.98 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/213435
URN:NBN:IT:UNIBS-213435