This thesis investigates the impact of CEINP nanocatalysts on H 2 production in a fixed-bed microreactor, evaluating their performance under low-temperature conditions. These nanocatalysts were specifically designed for use in CDM processes. Two variants, CEINP 30% and CEINP 40%, were successfully synthesized using an environmentally friendly and cost- effective carbon encapsulation method, with water (H₂O) serving as the solvent. During calcination, carbon sintering around the iron nanoparticles began at approximately 740°C, forming a distinctive ring-like structure that prevents agglomeration. This structure enhances the catalysts' resistance to heat and contamination. Extensive morphological, structural, vibrational, and thermal characterizations were conducted on these catalysts. Transmission Electron Microscopy (TEM) confirmed the encapsulation of the nanoparticles, focusing on the ring-like structure surrounding them while Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD) confirmed their nanoparticle structure. The synthesized nanocatalysts demonstrated high sensitivity to methane (CH 4 ) conversion, making them highly promising for CDM applications aimed at H 2 production. As CDM is a COx-free process, it offers a sustainable pathway for hydrogen formation. Moreover, CEINPs synthesized from renewable. Another study addresses the SMR activity of Ni-based nanocatalysts for H 2 production by using two different NiNP nanocatalysts synthesized through the same procedure but calcined at different annealing temperatures, 500°C and 800°C. The results showed that maximum CH 4 conversion occurred at 500°C, with a decreasing trend observed as the temperature increased during SMR using a fixed bed reactor. A similar pattern was noted for H 2 yield, with higher production at the lower temperature. This highlights that the green synthesis approach and the superior performance at lower annealing temperatures make NiNPs a promising candidate for advancing the hydrogen economy. Additionally, their potential to reduce global warming further supports their relevance in developing sustainable energy solutions. The thesis also explores the green synthesis of FeNPs and their performance in CO 2 hydrogenation for formate production, conducted in an autoclave PARR pressure reactor. Various morphological, structural, and thermal properties of the nanoparticles were analyzed to assess their size, shape, functional groups, and stability. The results indicate that FeNPs are effective for formate production when mild amounts of base are used. However, an increase in base concentration significantly reduces productivity, suggesting that highly concentrated basic conditions may deactivate the nanoparticles. Additionally, the reaction performed better in H 2 O as a solvent compared to tetrahydrofuran (THF), highlighting an environmentally favorable aspect of the process.
Questa tesi indaga l'impatto dei nanocatalizzatori CEINP sulla produzione di H 2 in un microreattore a letto fisso, valutandone le prestazioni in condizioni di bassa temperatura. Questi nanocatalizzatori sono stati progettati specificamente per l'uso nei processi CDM. Due varianti, CEINP 30% e CEINP 40%, sono state sintetizzate con successo utilizzando un metodo di incapsulamento del carbonio ecologico ed economico, con acqua (H 2 O) come solvente. Durante la calcinazione, la sinterizzazione del carbonio attorno alle nanoparticelle di ferro è iniziata a circa 740°C, formando una caratteristica struttura ad anello che impedisce l'agglomerazione. Questa struttura migliora la resistenza dei catalizzatori al calore e alla contaminazione. Su questi catalizzatori sono state condotte ampie caratterizzazioni morfologiche, strutturali, vibrazionali e termiche. La microscopia elettronica a trasmissione (TEM) ha confermato l'incapsulamento delle nanoparticelle, concentrandosi sulla struttura ad anello che le circonda, mentre la microscopia elettronica a scansione (SEM) e la diffrazione di raggi X (XRD) hanno confermato la loro struttura delle nanoparticelle. I nanocatalizzatori sintetizzati hanno dimostrato un'elevata sensibilità alla conversione del metano (CH 4 ), rendendoli molto promettenti per le applicazioni CDM mirate alla produzione di H 2 . Poiché il CDM è un processo privo di CO x , offre un percorso sostenibile per la formazione di idrogeno. Inoltre, i CEINP sono sintetizzati da fonti rinnovabili. Un altro studio affronta l'attività SMR dei nanocatalizzatori a base di Ni per la produzione di H 2 utilizzando due diversi nanocatalizzatori NiNP sintetizzati attraverso la stessa procedura ma calcinati a diverse temperature di ricottura, 500°C e 800°C. I risultati hanno mostrato che la conversione massima di CH 4 si verificava a 500°C, con un trend decrescente osservato all'aumentare della temperatura durante l'SMR utilizzando un reattore a letto fisso. Un modello simile è stato notato per la resa di H 2 , con una produzione maggiore a temperature più basse. Ciò evidenzia che l’approccio di sintesi verde e le prestazioni superiori a temperature di ricottura più basse rendono i NiNP un candidato promettente per far avanzare l’economia dell’idrogeno. Inoltre, il loro potenziale nel ridurre il riscaldamento globale supporta ulteriormente la loro rilevanza nello sviluppo di soluzioni energetiche sostenibili. La tesi esplora anche la sintesi verde dei FeNP e le loro prestazioni nell'idrogenazione della CO 2 per la produzione di formiato, condotta in un reattore a pressione PARR autoclave.
NANOSTRUCTURED MATERIALS FOR THE PRODUCTION OF CLEAN HYDROGEN FROM BIOMETHANE/BIOGAS
HAMEED, SAFIA
2025
Abstract
This thesis investigates the impact of CEINP nanocatalysts on H 2 production in a fixed-bed microreactor, evaluating their performance under low-temperature conditions. These nanocatalysts were specifically designed for use in CDM processes. Two variants, CEINP 30% and CEINP 40%, were successfully synthesized using an environmentally friendly and cost- effective carbon encapsulation method, with water (H₂O) serving as the solvent. During calcination, carbon sintering around the iron nanoparticles began at approximately 740°C, forming a distinctive ring-like structure that prevents agglomeration. This structure enhances the catalysts' resistance to heat and contamination. Extensive morphological, structural, vibrational, and thermal characterizations were conducted on these catalysts. Transmission Electron Microscopy (TEM) confirmed the encapsulation of the nanoparticles, focusing on the ring-like structure surrounding them while Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD) confirmed their nanoparticle structure. The synthesized nanocatalysts demonstrated high sensitivity to methane (CH 4 ) conversion, making them highly promising for CDM applications aimed at H 2 production. As CDM is a COx-free process, it offers a sustainable pathway for hydrogen formation. Moreover, CEINPs synthesized from renewable. Another study addresses the SMR activity of Ni-based nanocatalysts for H 2 production by using two different NiNP nanocatalysts synthesized through the same procedure but calcined at different annealing temperatures, 500°C and 800°C. The results showed that maximum CH 4 conversion occurred at 500°C, with a decreasing trend observed as the temperature increased during SMR using a fixed bed reactor. A similar pattern was noted for H 2 yield, with higher production at the lower temperature. This highlights that the green synthesis approach and the superior performance at lower annealing temperatures make NiNPs a promising candidate for advancing the hydrogen economy. Additionally, their potential to reduce global warming further supports their relevance in developing sustainable energy solutions. The thesis also explores the green synthesis of FeNPs and their performance in CO 2 hydrogenation for formate production, conducted in an autoclave PARR pressure reactor. Various morphological, structural, and thermal properties of the nanoparticles were analyzed to assess their size, shape, functional groups, and stability. The results indicate that FeNPs are effective for formate production when mild amounts of base are used. However, an increase in base concentration significantly reduces productivity, suggesting that highly concentrated basic conditions may deactivate the nanoparticles. Additionally, the reaction performed better in H 2 O as a solvent compared to tetrahydrofuran (THF), highlighting an environmentally favorable aspect of the process.File | Dimensione | Formato | |
---|---|---|---|
Tesi Hameed.pdf
embargo fino al 24/06/2026
Dimensione
5.73 MB
Formato
Adobe PDF
|
5.73 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/213436
URN:NBN:IT:UNIBS-213436