Ensuring air quality and detecting hazardous gases are critical for industrial safety, environmental monitoring, and public health. This thesis explores the development and optimization of gas sensors based on nickel oxide (NiO) and cerium oxide (CeO2) nanostructures for detecting toxic gases and volatile organic compounds (VOCs). The study emphasizes the impact of synthesis methods on sensor performance and highlights strategies to enhance sensitivity, selectivity, stability, and response kinetics. The first part of this work focuses on NiO nanowires synthesized using thermal oxidation and the Vapor-Liquid-Solid (VLS) method. NiO nanowires fabricated via thermal oxidation exhibited exceptional sensitivity to NO₂ at 200°C, with a detection limit of 0.2 ppb. Catalytic modification with platinum significantly boosted response, achieving a 2700% increase under humid conditions, though these sensors suffered from gradual degradation over time. In contrast, VLS-grown NiO nanowires demonstrated superior long-term stability, maintaining consistent NO₂ detection performance over seven days. These sensors exhibited a detection limit of 93 ppb and improved response kinetics under optimal conditions. For H2S detection, VLS-derived NiO sensors exhibited fast response times and recoverability, although their sensitivity declined over extended periods. Comparing these synthesis techniques underscores their potential for scalable fabrication and tailored gas sensing applications. The second part investigates cerium oxide synthesized via the co-precipitation method. The synthesis temperature significantly influenced ceria’s morphology and gas-sensing properties. Ceria prepared at 105°C displayed high sensitivity and selectivity toward acetone and ethanol, with detection limits of 18 ppb and 320 ppb, respectively, at 400°C. These sensors exhibited total recoverability, enhanced performance in moderate humidity (RH = 25%), and ultra-selectivity to acetone at low concentrations (0.5 ppm). This selective behaviour was attributed to the acetone carbonyl group’s dipole moment and superior reaction kinetics compared to ethanol. The findings establish ceria as a promising candidate for VOC detection in diverse environments. Finally, the study examines NiO nanowires decorated with ceria to explore synergistic effects between p-type and n-type semiconductors. While CeO2-NiO sensors demonstrated limited sensitivity to NO2, they exhibited improved recoverability, stability, and superior responsiveness to VOCs at elevated temperatures (450°C). Their robust performance under high humidity (RH = 90%) highlights their suitability for applications such as breath analysis and diagnostics, where consistent operation in humid conditions is essential.
La rilevazione chimica dei gas è fondamentale per garantire la qualità dell'aria e la sicurezza negli ambienti industriali e domestici. Gli ossidi metallici, noti per la loro sensibilità, stabilità e capacità di rilevare vari gas, sono candidati promettenti per applicazioni di rilevamento dei gas. La ricerca di questo dottorato si è concentrata sulla progettazione di sensori a gas nanostrutturati con prestazioni migliorate. Nanofili di ossido di nichel (NiO) sono stati sintetizzati mediante ossidazione termica e metodo VLS, dimostrando sensibilità elevata verso NO2. Lo studio ha anche indagato il ruolo dei catalizzatori, rivelando che i nanofili di NiO catalizzate con Pt hanno superato significativamente quelle catalizzate con Au, mostrando un aumento del 2700% nella risposta per NiO-Pt e un aumento del 400% per NiO-Au in condizioni di umidità (1 ppm NO2). Questo aumento di sensibilità è stato attribuito all'interazione più forte tra NO2 e la superficie del sensore rispetto alle molecole interferenti di acqua e ossigeno. Tuttavia, questi sensori hanno mostrato un graduale deterioramento delle prestazioni nel tempo. Al contrario, i nanofili di NiO sintetizzati con il metodo VLS hanno dimostrato prestazioni più costanti, senza degrado nella risposta nel tempo e con un maggior recupero del segnale. I nanofili di NiO ottenuti tramite ossidazione termica hanno rilevato NO2 fino a 0,2 ppb a 200°C, mentre quelli VLS hanno mostrato stabilità a lungo termine e un limite di rilevazione di 93 ppb. I sensori preparati mediante VLS hanno mantenuto prestazioni nel tempo, con tempi di risposta e recupero di 773 s e 1940 s rispettivamente. Per l'H2S, il metodo VLS ha garantito tempi di risposta e di recupero più rapidi a una temperatura di crescita di 1026°C. L'ossido di cerio (CeO2), prodotto tramite co-precipitazione, ha dimostrato alta sensibilità verso acetone ed etanolo a 400°C, con limiti di rilevazione rispettivamente di 18 ppb e 320 ppb. L'umidità ha migliorato la risposta verso i VOC, con il massimo a un'umidità relativa del 25%. I sensori decorati con CeO2 su nanofili di NiO hanno mostrato una migliore risposta verso acetone ed etanolo, mantenendo prestazioni robuste anche in condizioni di elevata umidità (RH=90%), suggerendone l'applicazione in analisi del respiro. Questi risultati evidenziano il potenziale delle strutture nanostrutturate di NiO e CeO2 per sensori di gas ad alte prestazioni.
METAL OXIDE SEMICONDUCTORS’ DESIGN FOR GAS SENSING APPLICATIONS: TUNING PHYSICAL PROPERTIES AND SURFACE MORPHOLOGIES FOR EFFICIENT DEVICES
BEN ARBIA, MARWA
2025
Abstract
Ensuring air quality and detecting hazardous gases are critical for industrial safety, environmental monitoring, and public health. This thesis explores the development and optimization of gas sensors based on nickel oxide (NiO) and cerium oxide (CeO2) nanostructures for detecting toxic gases and volatile organic compounds (VOCs). The study emphasizes the impact of synthesis methods on sensor performance and highlights strategies to enhance sensitivity, selectivity, stability, and response kinetics. The first part of this work focuses on NiO nanowires synthesized using thermal oxidation and the Vapor-Liquid-Solid (VLS) method. NiO nanowires fabricated via thermal oxidation exhibited exceptional sensitivity to NO₂ at 200°C, with a detection limit of 0.2 ppb. Catalytic modification with platinum significantly boosted response, achieving a 2700% increase under humid conditions, though these sensors suffered from gradual degradation over time. In contrast, VLS-grown NiO nanowires demonstrated superior long-term stability, maintaining consistent NO₂ detection performance over seven days. These sensors exhibited a detection limit of 93 ppb and improved response kinetics under optimal conditions. For H2S detection, VLS-derived NiO sensors exhibited fast response times and recoverability, although their sensitivity declined over extended periods. Comparing these synthesis techniques underscores their potential for scalable fabrication and tailored gas sensing applications. The second part investigates cerium oxide synthesized via the co-precipitation method. The synthesis temperature significantly influenced ceria’s morphology and gas-sensing properties. Ceria prepared at 105°C displayed high sensitivity and selectivity toward acetone and ethanol, with detection limits of 18 ppb and 320 ppb, respectively, at 400°C. These sensors exhibited total recoverability, enhanced performance in moderate humidity (RH = 25%), and ultra-selectivity to acetone at low concentrations (0.5 ppm). This selective behaviour was attributed to the acetone carbonyl group’s dipole moment and superior reaction kinetics compared to ethanol. The findings establish ceria as a promising candidate for VOC detection in diverse environments. Finally, the study examines NiO nanowires decorated with ceria to explore synergistic effects between p-type and n-type semiconductors. While CeO2-NiO sensors demonstrated limited sensitivity to NO2, they exhibited improved recoverability, stability, and superior responsiveness to VOCs at elevated temperatures (450°C). Their robust performance under high humidity (RH = 90%) highlights their suitability for applications such as breath analysis and diagnostics, where consistent operation in humid conditions is essential.File | Dimensione | Formato | |
---|---|---|---|
Thesis Manuscript.pdf
embargo fino al 24/06/2026
Dimensione
13.87 MB
Formato
Adobe PDF
|
13.87 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/213437
URN:NBN:IT:UNIBS-213437