EB is a family of rare inherited blistering skin disorders due to mutations in genes coding several adhesion proteins. Nowadays, there is no cure for EB, all the treatments are palliative and focused on the relief of the EB symptoms. Recent advancement in molecular biology, stem cell biology and regenerative medicine have fostered new therapeutic approach such as the one that lead to the successful ex vivo gene therapy phase I clinical trial on Laminin 332-dependent JEB in 2006. This approach has demonstrated that the long-term restoration of JEB epidermis requires a defined number of transduced epidermal holoclones (Mavilio et al. 2006). However, no cell membrane epithelial stem cell markers have been identified that allow the prospective isolation and transduction of stem cell in culture. For this reason the current gene therapy approach is to obtain a close to 100% of transduction efficiency of an heterogeneous keratinocyte culture in order to be sure to transduce keratinocyte stem cells. We developed the same approach to genetically correct epidermal stem cells from COL17-dependent JEB, envisaging MLV-derived retroviral vectors (MLV-RV) and Self Inactivated-RV (SIN-RV). For MLV-RV strategy, we generated Am12-Col17 packaging cells, clones were selected and used to transduce keratinocytes using a co-culture procedure, which allowed to achieve a 95% transduction efficiency. Transduced keratinocytes were maintained in long-term culture and their Colony Forming Ability was measured to evaluate cell toxicity. Epidermal stem cell transduction was demonstrated with clonal analysis. In parallel, we performed similar experiments using SIN-RV viral constructs that differ in endogenous promoters and vector backbones. We have selected the best vector to efficiently correct the genetic defect and actually we are testing the transduction efficiency on keratinocyte culture of different SIN packaging cell line clones. In both strategies, genotoxicity assays are ongoing to show whether SIN-RV and MLV-RV have a different safety profile in terms of potential insertional mutagenesis. In particular we are testing transduced cultures in soft agar assay, serial cultivation and growth factor dependence assay. In parallel we tried to identify a keratinocyte stem cell marker that can be used in clinic in order to allow the identification and -eventually- the selection of a pure population of stem cells for gene correction. To this end we analyse the transcriptional profile of keratinocyte stem cells (Holoclone forming cells) compared to transcriptional profile of the transient amplifying cells (Meroclone- forming cells). Bioinformatical analysis of microarray data allowed to identify differentially expressed genes and delineate a molecular signature of each class of clones. Moreover data were analysed by the network-based Ingenuity Pathways Analysis tool, to search for the most relevant molecular interactions, functions and pathways differentially expressed in Holoclones vs Meroclones. Genes that resulted upregulated in holoclone respect to meroclone, were confirmed by real time PCR, while protein expression relative to upregulated genes was investigated by western blot and immunofluorescence analysis. Moreover gain and loss of function studies are ongoing to investigate the role of these genes in keratinocytes homeostasis. Consistent with this preliminary data we can confirmed that Holoclones and late meroclones have a quite different gene expression profile that makes possible to define a specific gene signature of human KSCs. Molecular characterization of keratinocyte stem cell has an important impact on gene therapy approaches since it would improve the efficiency of stem cell transduction assuring the long-term restoration of corrected-EB epidermis.
L’Epidermolisi Bollosa è una famiglia di malattie genetiche rare della pelle causata da mutazioni in geni codificanti per proteine di adesione derma-epidermide per la quale attualmente non esiste una cura. Nel 2006 è stato sviluppato un trial clinico di fase I per un paziente JEB-Laminina dipendente con una strategia di gene therapy ex-vivo e il successo di questo approccio ha dimostrato che per la correzione a lungo termine dell’epidermide del paziente è necessario trasdurre un numero definito di cellule staminali epiteliali (olocloni). Tuttavia attualmente non esistono marker di membrana specifici che permettano l’isolamento e la trasduzione di questa popolazione in coltura e per questo è necessario ottenere un’efficienza di trasduzione vicina al 100% che ne garantisca la correzione all’interno di una coltura eterogenea. Abbiamo sviluppato lo stesso approccio per correggere cellule derivate da pazienti JEB-Col17 dipendenti utilizzando vettori retrovirali MLV derivati e vettori SIN. Per i vettori MLV abbiamo generato una linea cellulare di packaging AM12-Col17 e i cloni sono stati selezionati e utilizzati per trasdurre i cheratinociti con il sistema di co-coltura ottenendo un’efficienza di trasduzione del 95%. I cheratinociti trasdotti sono stati quindi mantenuti in coltura e attraverso saggi di colony forming efficiency abbiamo valutato la tossicità cellulare, mentre la trasduzione delle staminali è stata confermata attraverso il saggio di analisi clonale. In parallelo abbiamo realizzato gli stessi esperimenti utilizzando diversi costrutti SIN che differivano per i promotori endogeni e per lo scheletro virale e dopo aver scelto il vettore più funzionale per il nostro sistema di coltura, stiamo testando diversi cloni della packaging SIN per scegliere il migliore in termini di efficienza di trasduzione. Per entrambe le strategie (MLV e SIN) sono in corso saggi di genotossicità per valutare il profilo di safety in termini di potenziale mutagenesi inserzionale quali: soft agar, coltivazione seriale e saggio di dipendenza da fattori di crescita. In parallelo abbiamo allestito altri esperimenti per trovare un potenziale marker delle cellule staminali epiteliali che ne possa permettere l’identificazione e eventualmente la selezione e possa essere usato in clinica nei protocolli di terapia genica. Abbiamo quindi confrontato il profilo trascrizionale delle cellule staminali epiteliali (olocloni) con quello delle cellule transient ampifying (merocloni) e le analisi bioinformatiche dei microarray hanno permesso di identificare i geni differenzialmente espressi e di descrivere una signature molecolare per ogni classe di cloni. Inoltre i dati sono stati analizzati con il software di analisi Ingenuity per riconoscere le interazioni molecolari, le funzioni e le pathway differenzialmente espresse tra olocloni e meerocloni. I geni che sono risultati up-regolati negli olocloni rispetto ai merocloni sono stati validati attraverso real-time PCR e la relativa espressione proteica è stata valutata attraverso western blot e immunofluorescenza. Inoltre abbiamo allestito studi di arricchimento e perdita della funzione proteica per verificare il ruolo di questi geni nell’omeostasi dei cheratinociti. Con questi dati preliminari possiamo confermare che olocloni e merocloni hanno un profilo di espressione genica diverso e questo permette di identificare con chiarezza una signature molecolare che definisce la popolazione di cellule staminali epiteliali. Questo studio ha quindi un impatto importante sulla gene therapy perché potrebbe migliorare notevolmente l’efficienza di trasduzione delle staminali assicurando così una correzione definitiva dell’epidermide dei pazienti EB.
Caratterizzazione di cellule staminali epiteliali per un approccio efficace di terapia genica ex vivo.
FRANCHINI, ELEONORA
2016
Abstract
EB is a family of rare inherited blistering skin disorders due to mutations in genes coding several adhesion proteins. Nowadays, there is no cure for EB, all the treatments are palliative and focused on the relief of the EB symptoms. Recent advancement in molecular biology, stem cell biology and regenerative medicine have fostered new therapeutic approach such as the one that lead to the successful ex vivo gene therapy phase I clinical trial on Laminin 332-dependent JEB in 2006. This approach has demonstrated that the long-term restoration of JEB epidermis requires a defined number of transduced epidermal holoclones (Mavilio et al. 2006). However, no cell membrane epithelial stem cell markers have been identified that allow the prospective isolation and transduction of stem cell in culture. For this reason the current gene therapy approach is to obtain a close to 100% of transduction efficiency of an heterogeneous keratinocyte culture in order to be sure to transduce keratinocyte stem cells. We developed the same approach to genetically correct epidermal stem cells from COL17-dependent JEB, envisaging MLV-derived retroviral vectors (MLV-RV) and Self Inactivated-RV (SIN-RV). For MLV-RV strategy, we generated Am12-Col17 packaging cells, clones were selected and used to transduce keratinocytes using a co-culture procedure, which allowed to achieve a 95% transduction efficiency. Transduced keratinocytes were maintained in long-term culture and their Colony Forming Ability was measured to evaluate cell toxicity. Epidermal stem cell transduction was demonstrated with clonal analysis. In parallel, we performed similar experiments using SIN-RV viral constructs that differ in endogenous promoters and vector backbones. We have selected the best vector to efficiently correct the genetic defect and actually we are testing the transduction efficiency on keratinocyte culture of different SIN packaging cell line clones. In both strategies, genotoxicity assays are ongoing to show whether SIN-RV and MLV-RV have a different safety profile in terms of potential insertional mutagenesis. In particular we are testing transduced cultures in soft agar assay, serial cultivation and growth factor dependence assay. In parallel we tried to identify a keratinocyte stem cell marker that can be used in clinic in order to allow the identification and -eventually- the selection of a pure population of stem cells for gene correction. To this end we analyse the transcriptional profile of keratinocyte stem cells (Holoclone forming cells) compared to transcriptional profile of the transient amplifying cells (Meroclone- forming cells). Bioinformatical analysis of microarray data allowed to identify differentially expressed genes and delineate a molecular signature of each class of clones. Moreover data were analysed by the network-based Ingenuity Pathways Analysis tool, to search for the most relevant molecular interactions, functions and pathways differentially expressed in Holoclones vs Meroclones. Genes that resulted upregulated in holoclone respect to meroclone, were confirmed by real time PCR, while protein expression relative to upregulated genes was investigated by western blot and immunofluorescence analysis. Moreover gain and loss of function studies are ongoing to investigate the role of these genes in keratinocytes homeostasis. Consistent with this preliminary data we can confirmed that Holoclones and late meroclones have a quite different gene expression profile that makes possible to define a specific gene signature of human KSCs. Molecular characterization of keratinocyte stem cell has an important impact on gene therapy approaches since it would improve the efficiency of stem cell transduction assuring the long-term restoration of corrected-EB epidermis.File | Dimensione | Formato | |
---|---|---|---|
PhD_Thesis_Eleonora_Franchini.pdf
accesso aperto
Dimensione
32.1 MB
Formato
Adobe PDF
|
32.1 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/214589
URN:NBN:IT:UNIMORE-214589