1.1. Background Epileptogenesis in glioblastoma (GBM) is known to occur within the peritumoral cortex. However, few studies have specifically focused on this region's role in both tumor progression and seizure activity. This gap highlights the need to investigate the complex interactions between the tumor core and the peritumoral microenvironment that contribute to both seizures and tumor growth. 1.2. Objectives - To evaluate differences in gene expression profile between GBM patients presenting with seizures at onset (GBM-EP⁺) and those with other symptoms (GBM-EP⁻). - To assess differences in clinical and molecular characteristics between the two groups. - To evaluate potential differences in overall survival (OS) and progression-free survival (PFS) between the two groups. 1.3. Methods We studied two retrospective cohorts: the Reggio Emilia cohort (32 patients), analyzed using spatial transcriptomics, and the Paris cohort (231 patients), analyzed using tumor bulk RNA sequencing. Inclusion criteria required a GBM diagnosis, complete clinical/molecular data, and no prior epilepsy. Molecular profiles, including IDH mutations and MGMT methylation status, were obtained via next-generation sequencing (NGS). Clinical data (OS, PFS, seizure history) were collected. Transcriptomic data from the Reggio Emilia cohort were analyzed using GeoMx DSP® spatial transcriptomics; RNA sequencing in the Paris cohort used the Illumina HiSeq platform. 1.4. Results In both cohorts, seizures at initial presentation did not significantly influence survival. No clinical or molecular variables, including mutations commonly associated with GBM, were significantly linked to seizures. The only notable difference was a higher Karnofsky Performance Status (KPS) in GBM-EP⁺ patients. Analysis of tumor and peritumoral regions from GBM-EP⁺ and GBM-EP⁻ patients revealed only marginal transcriptional differences between compartments. However, tumor-versus-glia comparisons showed distinct transcriptional trajectories. EP⁻ tumors exhibited broader gene deregulation and adoption of a mesenchymal-like phenotype, characterized by increased glycolysis, motility, and angiogenesis, and downregulation of neuronal programs. In contrast, EP⁺ GBMs upregulated genes related to protein synthesis and mitochondrial function, suggesting a more proliferative than invasive profile. Deconvolution analysis showed a relatively "hotter" immune microenvironment in EP⁺ tumors. Transcription factor analysis identified Bromodomain-containing protein 4 (BRD4) as a key driver of the mesenchymal-like program in EP⁻ GBMs, correlating with motility genes and poor prognostic markers. 1.5. Conclusion Our study suggests that, although seizures at onset do not significantly impact survival in homogeneous cohorts of GBM patients, distinct tumorigenic processes drive tumor development in patients with epilepsy compared to those without seizures at onset. The peritumoral microenvironment plays a crucial role in modulating the tumor phenotype, with epilepsy potentially mitigating the acquisition of a mesenchymal-like phenotype often associated with aggressive tumor behavior. In patients without seizures at onset, BRD4 was identified as a crucial regulator of the transcriptional program that drives this mesenchymal phenotype in GBM. These findings underscore the importance of spatially resolved molecular analyses in understanding the complex interplay between tumor biology and epilepsy. Future studies should aim to validate these results in larger cohorts and explore potential therapeutic targets informed by spatial transcriptomics.
2.1. Introduzione L'epilettogenesi nel glioblastoma (GBM) è comunemente associata alla corteccia peritumorale, ma pochi studi si sono concentrati sul ruolo specifico di questa regione nella progressione del tumore e nella genesi delle crisi epilettiche. Ciò evidenzia la necessità di approfondire le complesse interazioni tra cellule tumorali e microambiente peritumorale, che contribuiscono sia alle crisi epilettiche che alla crescita tumorale. 2.2. Obiettivi - Valutare differenze nel profilo di espressione genica tra pazienti con GBM che hanno presentato crisi epilettiche all'esordio clinico (GBM-EP+) e quelli con altri sintomi iniziali (GBM-EP-). - Analizzare eventuali differenze cliniche e molecolari tra i due gruppi. - Valutare possibili differenze prognostiche in termini di sopravvivenza globale (OS) e sopravvivenza libera da progressione (PFS) tra i due gruppi. 2.3. Metodi Lo studio ha analizzato due coorti retrospettive: la coorte di Reggio Emilia (32 pazienti), esaminata con trascrittomica spaziale, e quella di Parigi (231 pazienti), analizzata con RNA 3’ seq su bulk tumorale. Le coorti sono state selezionate in base a dati clinici e molecolari, con criteri di inclusione che prevedevano una diagnosi di GBM, dati clinici e molecolari completi e assenza di epilessia pregressa. I profili molecolari, comprese le mutazioni dell’isocitrato deidrogenasi (IDH) e la metilazione del promotore MGMT, sono stati ottenuti tramite sequenziamento di nuova generazione (NGS). Sono stati raccolti e analizzati anche i dati clinici, tra cui OS, PFS e storia di crisi epilettiche. I dati della coorte di Reggio Emilia sono stati analizzati tramite piattaforma GeoMx DSP®, mentre quelli della coorte di Parigi mediante Illumina HiSeq. 2.4. Risultati In entrambe le coorti, la presenza di crisi all’esordio non influenzava significativamente la sopravvivenza. Non sono emerse variabili cliniche o molecolari, incluse le mutazioni più frequenti nel GBM, associate in modo significativo alle crisi. L’unica differenza osservata è stata un KPS più alto nei pazienti con crisi all’esordio. L’analisi delle regioni tumorali e peritumorali ha mostrato differenze trascrizionali marginali tra compartimenti. Tuttavia, il confronto tra tumore e glia in ciascun gruppo ha rivelato traiettorie trascrizionali distinte: i tumori EP⁻ mostravano una deregolazione genica più estesa e un fenotipo mesenchimale, con aumento di glicolisi, motilità e angiogenesi, e riduzione di programmi neuronali. Al contrario, i tumori EP⁺ presentavano una sovraregolazione di geni coinvolti nella sintesi proteica e nella funzione mitocondriale, suggerendo una firma proliferativa più che invasiva. L’analisi di deconvoluzione ha mostrato un microambiente immunitario relativamente più “attivo” nei tumori EP⁺. L’analisi dei fattori di trascrizione ha identificato BRD4 come driver chiave del programma mesenchimale nei GBM EP⁻, in correlazione con geni legati alla motilità e marcatori prognostici negativi. 2.5. Conclusioni Il nostro studio suggerisce che, sebbene la presenza di crisi epilettiche all’esordio non influenzi la sopravvivenza in coorti omogenee di pazienti con GBM, i pazienti con epilessia mostrano processi tumorigenici distinti rispetto a quelli senza crisi. Il microambiente peritumorale gioca un ruolo fondamentale nel modulare il fenotipo tumorale: l’epilessia potrebbe contrastare l’acquisizione di un fenotipo mesenchimale, associato a maggiore aggressività. Nei pazienti EP⁻, BRD4 è risultato un regolatore chiave del programma trascrizionale mesenchimale. Questi risultati evidenziano l’importanza delle analisi molecolari risolte spazialmente per comprendere le interazioni tra biologia tumorale ed epilessia. Studi futuri dovranno validare tali evidenze in coorti più ampie ed esplorare nuovi bersagli terapeutici attraverso l’impiego della trascrittomica spaziale.
Fattori clinici, molecolari e trascrittomici associati alle crisi epilettiche all'esordio nei pazienti con glioblastoma
Rossi, Jessica
2025
Abstract
1.1. Background Epileptogenesis in glioblastoma (GBM) is known to occur within the peritumoral cortex. However, few studies have specifically focused on this region's role in both tumor progression and seizure activity. This gap highlights the need to investigate the complex interactions between the tumor core and the peritumoral microenvironment that contribute to both seizures and tumor growth. 1.2. Objectives - To evaluate differences in gene expression profile between GBM patients presenting with seizures at onset (GBM-EP⁺) and those with other symptoms (GBM-EP⁻). - To assess differences in clinical and molecular characteristics between the two groups. - To evaluate potential differences in overall survival (OS) and progression-free survival (PFS) between the two groups. 1.3. Methods We studied two retrospective cohorts: the Reggio Emilia cohort (32 patients), analyzed using spatial transcriptomics, and the Paris cohort (231 patients), analyzed using tumor bulk RNA sequencing. Inclusion criteria required a GBM diagnosis, complete clinical/molecular data, and no prior epilepsy. Molecular profiles, including IDH mutations and MGMT methylation status, were obtained via next-generation sequencing (NGS). Clinical data (OS, PFS, seizure history) were collected. Transcriptomic data from the Reggio Emilia cohort were analyzed using GeoMx DSP® spatial transcriptomics; RNA sequencing in the Paris cohort used the Illumina HiSeq platform. 1.4. Results In both cohorts, seizures at initial presentation did not significantly influence survival. No clinical or molecular variables, including mutations commonly associated with GBM, were significantly linked to seizures. The only notable difference was a higher Karnofsky Performance Status (KPS) in GBM-EP⁺ patients. Analysis of tumor and peritumoral regions from GBM-EP⁺ and GBM-EP⁻ patients revealed only marginal transcriptional differences between compartments. However, tumor-versus-glia comparisons showed distinct transcriptional trajectories. EP⁻ tumors exhibited broader gene deregulation and adoption of a mesenchymal-like phenotype, characterized by increased glycolysis, motility, and angiogenesis, and downregulation of neuronal programs. In contrast, EP⁺ GBMs upregulated genes related to protein synthesis and mitochondrial function, suggesting a more proliferative than invasive profile. Deconvolution analysis showed a relatively "hotter" immune microenvironment in EP⁺ tumors. Transcription factor analysis identified Bromodomain-containing protein 4 (BRD4) as a key driver of the mesenchymal-like program in EP⁻ GBMs, correlating with motility genes and poor prognostic markers. 1.5. Conclusion Our study suggests that, although seizures at onset do not significantly impact survival in homogeneous cohorts of GBM patients, distinct tumorigenic processes drive tumor development in patients with epilepsy compared to those without seizures at onset. The peritumoral microenvironment plays a crucial role in modulating the tumor phenotype, with epilepsy potentially mitigating the acquisition of a mesenchymal-like phenotype often associated with aggressive tumor behavior. In patients without seizures at onset, BRD4 was identified as a crucial regulator of the transcriptional program that drives this mesenchymal phenotype in GBM. These findings underscore the importance of spatially resolved molecular analyses in understanding the complex interplay between tumor biology and epilepsy. Future studies should aim to validate these results in larger cohorts and explore potential therapeutic targets informed by spatial transcriptomics.File | Dimensione | Formato | |
---|---|---|---|
Rossi.pdf
embargo fino al 08/01/2027
Dimensione
3.03 MB
Formato
Adobe PDF
|
3.03 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/215227
URN:NBN:IT:UNIMORE-215227