Mars exploration has recently witnessed major interest within the scientific community. Unmanned robotic platforms offer reliable solutions to acquire and collect data and information from the Red Planet. Particularly, rovers, landers, and orbiters have significantly shaped planetary exploration on the Moon and Mars, contributing significantly to past missions while also highlighting limitations in their capacity to cover diverse terrains over wide ranges. Given current advances in Unmanned Aircraft Systems (UASs), Unmanned Aerial Vehicles (UAVs) offer promising alternatives for future scientific missions.It is argued that hexacopters, with their relatively compact design and redundancy, present a promising solution for autonomous exploration tasks on Mars, overcoming at the same time the limitations of wheel-based rovers and increasing orbiters' data resolution. However, the specific harsh conditions of the Martian environment result in a restricted flight envelope when flying close to the surface and then landing. To this end, autonomous navigation strategies along with robust controllers are needed for complex exploration tasks.This research focuses on designing a Mars Hexacopter (MHex) for a scouting mission in the Martian Jezero region. The hexacopter configuration and architecture considers, as a initial baseline, the NASA conceptual study of the Mars Science Helicopter (MSH). Then, the mission profile for mapping the Belva crater is examined, followed by a detailed approach to implement and test autonomous observer-based navigation and control strategies. A comprehensive simulated environment is also presented based on integrating ROS and Ardupilot, which is used to validate the overall system architecture and the mission parameters considering both the morphological shape of the explored crater and the atmospheric conditions of Mars.
L'esplorazione di Marte ha recentemente suscitato un forte interesse all'interno della comunità scientifica. Le piattaforme robotiche senza equipaggio offrono soluzioni affidabili per acquisire e raccogliere dati e informazioni dal Pianeta Rosso. In particolare, rover, lander e orbiter hanno avuto un ruolo determinante nell’esplorazione planetaria della Luna e di Marte, contribuendo in modo significativo alle missioni passate, ma allo stesso tempo evidenziando i limiti nella capacità di coprire terreni eterogenei su ampie aree. Considerando i recenti progressi nei Sistemi Aeromobili a Pilotaggio Remoto (UAS), i Veicoli Aerei Senza Equipaggio (UAV) rappresentano alternative promettenti per le future missioni scientifiche.Si ritiene che gli esacotteri, grazie al loro design relativamente compatto e alla ridondanza, costituiscano una soluzione promettente per compiti di esplorazione autonoma su Marte, superando i limiti dei rover su ruote e migliorando la risoluzione dei dati acquisiti dagli orbiter.Tuttavia, le condizioni ambientali particolarmente ostili del pianeta Marte comportano un inviluppo di volo ristretto nelle fasi di volo vicino alla superficie e di atterraggio. A tal fine, sono necessarie strategie di navigazione autonoma e controllori robusti per affrontare compiti esplorativi complessi.Questa ricerca si concentra sulla progettazione di un Esacottero Marziano (MHex) per una missione di ricognizione nella regione marziana di Jezero. La configurazione e l’architettura dell’esacottero prendono come riferimento iniziale lo studio concettuale della NASA sul Mars Science Helicopter (MSH). Successivamente, viene analizzato il profilo della missione per la mappatura del cratere Belva, seguito da un approccio dettagliato per implementare e testare strategie autonome di navigazione e controllo basate su osservatori. Viene inoltre presentato un ambiente simulato completo, basato sull’integrazione di ROS e Ardupilot, utilizzato per validare l’architettura complessiva del sistema e i parametri della missione, considerando sia la morfologia del cratere esplorato sia le condizioni atmosferiche marziane.
An Advanced Hexacopter for Autonomous Exploration of Mars: Attitude Control and Navigation Strategies
SOPEGNO, Laura
2025
Abstract
Mars exploration has recently witnessed major interest within the scientific community. Unmanned robotic platforms offer reliable solutions to acquire and collect data and information from the Red Planet. Particularly, rovers, landers, and orbiters have significantly shaped planetary exploration on the Moon and Mars, contributing significantly to past missions while also highlighting limitations in their capacity to cover diverse terrains over wide ranges. Given current advances in Unmanned Aircraft Systems (UASs), Unmanned Aerial Vehicles (UAVs) offer promising alternatives for future scientific missions.It is argued that hexacopters, with their relatively compact design and redundancy, present a promising solution for autonomous exploration tasks on Mars, overcoming at the same time the limitations of wheel-based rovers and increasing orbiters' data resolution. However, the specific harsh conditions of the Martian environment result in a restricted flight envelope when flying close to the surface and then landing. To this end, autonomous navigation strategies along with robust controllers are needed for complex exploration tasks.This research focuses on designing a Mars Hexacopter (MHex) for a scouting mission in the Martian Jezero region. The hexacopter configuration and architecture considers, as a initial baseline, the NASA conceptual study of the Mars Science Helicopter (MSH). Then, the mission profile for mapping the Belva crater is examined, followed by a detailed approach to implement and test autonomous observer-based navigation and control strategies. A comprehensive simulated environment is also presented based on integrating ROS and Ardupilot, which is used to validate the overall system architecture and the mission parameters considering both the morphological shape of the explored crater and the atmospheric conditions of Mars.File | Dimensione | Formato | |
---|---|---|---|
UniPa_thesis_LS.pdf
accesso aperto
Dimensione
6.4 MB
Formato
Adobe PDF
|
6.4 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/217784
URN:NBN:IT:UNIPA-217784