The Magnetically Enhanced Plasma Thruster (MEPT) is a cathode-less plasma thruster specifically targeted at CubeSats. This technology is extremely appealing for space propulsion, in particular for CubeSats, because of its simple design, geometry and, in turn, reduced cost if compared with well-established systems such as the Ion and Hall effect thrusters. REGULUS is a miniaturized electric low-thrust propulsion system developed by T4i, meant to be employed in very small satellites, which integrates the MEPT technology. REGULUS fits in a 1.5 U space, it can produce a total impulse of 3000 Ns powered with 50 W, it has a nominal thrust of 0.6 mN, and it can be operative up to 5 years in orbit. Apart from the MEPT thruster and its small dimension, REGULUS has another very interesting and disruptive innovation: it uses a solid propellant, iodine. Iodine brings enormous advantages to a propulsion system: (a) it can be stored as solid, (b) it has a high density (4900 kg/m^3), (c) no pressurized hardware are required, and (d) it is considered a green propellant. Nonetheless, the use of iodine brings some issues that need to be overcome in order to make it a reliable resource: (a) it is chemically reactive and corrosive with several metal materials used for space applications (e.g. aluminium alloys), (b) the thermal control is non-trivial as it shall grant the proper sublimation rate from the tank and avoid the re-condensation of iodine on the walls of tubes and valves. For this reason, this research program was focused on the study and development of a fluidic system to handle iodine propellant. The fluidic line has been realized, tested and integrated with the MEPT, under the supervision of T4i. The work was focused mainly on the thermal management of the fluidic line, in which the main requirement is to provide a mass flow rate of 0.1 mg/s. Specifically, a numerical model was developed to grasp the thermal and fluidic behaviour of REGULUS, to capture the physics behind it, and study those situations that cannot be tested in the laboratory (e.g., the temperature variation of the satellite) due to lack of equipment. At the same time, an experimental campaign was carried on characterizing the REGULUS fluidic module, so as to collect experience with iodine and find out the limits of the actual fluidic configuration. Both numerical analysis and testing were employed to detail a working operative procedure for the flight model fluidic line of REGULUS, to ensure the right conditions of pressure, temperature and mass flow rate during the In-Orbit-Demonstration. Then, a completely new re-design of the fluidic system was proposed, that improve the present design under several fundamental points of view and in order to attract a wider and new market. The total impulse was increased from 3000 Ns to 11000 Ns, storing more propellant and increasing the ratio between propellant and dry mass by more than a factor of 2. Furthermore, thermal management has been made more efficient, drastically reducing the total power consumption by more than 50 % and bringing the minimum operative temperature from 20 to -20 °C. Finally, several minor improvements have been suggested, like new suitable Commercial Off The Shelf (COTS) components and design choices.
Magnetically Enhanced Plasma Thruster (MEPT) è un propulsore al plasma senza catodo specificamente sviluppato per i CubeSats. Questa tecnologia si rivela estremamente attraente per la propulsione spaziale, in quanto il suo semplice design ne riduce il costo rispetto a sistemi consolidati come i propulsori a ioni e ad effetto Hall. REGULUS è un propulsore elettrico miniaturizzato sviluppato da T4i, pensato per essere impiegato in satelliti di piccole dimensioni. La peculiarità di REGULUS è quella di integrare la tecnologia MEPT. REGULUS si inserisce in uno spazio di 1.5 U, può produrre un impulso totale di 3000 Ns, è alimentato con 50 W, ha una spinta nominale di 0.6 mN, e può essere operativo fino a 5 anni in orbita. Oltre al propulsore MEPT e alle sue piccole dimensioni, REGULUS introduce un'altra interessante innovazione: utilizza un propellente solido, lo iodio. Lo iodio, porta enormi vantaggi a un sistema propulsivo di questo tipo in quanto: (a) può essere immagazzinato come solido, (b) ha un'alta densità (4900 kg/m^3), (c) non è richiesto un sistema in pressione, e (d) è considerato un propellente green. Tuttavia, l'uso dello iodio comporta alcuni problemi che devono essere superati per renderlo una risorsa affidabile: (a) è chimicamente reattivo e corrosivo con molti materiali metallici utilizzati per applicazioni spaziali (es. leghe di alluminio), (b) il controllo termico non è banale in quanto deve garantire la giusta velocità di sublimazione dal serbatoio ed evitare la ricondensazione dello iodio sulle pareti dei tubi e delle valvole. Per questo motivo il programma di ricerca si è concentrato sullo studio e lo sviluppo di un sistema fluidico con propellente iodio per il MEPT, sotto la supervisione di T4i. Il lavoro si è concentrato principalmente sulla gestione termica della linea fluidica, il cui requisito principale è fornire una portata massica di 0.1 mg/s. Nello specifico, è stato sviluppato un modello numerico per cogliere il comportamento termico e fluidico di REGULUS, per catturare la fisica che lo caratterizza e studiare quelle situazioni che non possono essere testate in laboratorio (ad esempio, variazione di temperatura del satellite) a causa della mancanza di attrezzature. Allo stesso tempo, è stata condotta una campagna sperimentale per caratterizzare il modulo fluidico di REGULUS, in modo da acquisire esperienza con lo iodio e scovare i limiti dell'attuale configurazione fluidica. Sia l'analisi numerica che i test sono stati impiegati per dettagliare una procedura operativa funzionante per la linea fluidica del modello da volo di REGULUS, nonchè per garantire le giuste condizioni di pressione, temperatura e portata di massa durante la dimostrazione in orbita. Quindi, è stata proposta una riprogettazione completamente nuova del sistema fluidico, che migliora l'attuale design sotto diversi punti di vista e il cui fine è attrarre un mercato più ampio. L'impulso totale è stato aumentato da 3000 Ns a 11000 Ns, immagazzinando più propellente e aumentando il rapporto tra propellente e massa strutturale di oltre un fattore 2. Inoltre, la gestione termica è stata resa più efficiente, riducendo drasticamente il consumo totale di energia di oltre il 50 % e portando la temperature minima di esercizio da 20 a -20 °C. Infine, sono stati suggeriti diversi miglioramenti secondari, come nuovi componenti COTS (Commercial Off The Shelf Component) e diverse scelte progettuali.
Studio e sviluppo di un sistema fluidico per un Magnetically Enhanced Plasma Thruster (MEPT) alimentato a iodio
MINUTE, MARCO
2022
Abstract
The Magnetically Enhanced Plasma Thruster (MEPT) is a cathode-less plasma thruster specifically targeted at CubeSats. This technology is extremely appealing for space propulsion, in particular for CubeSats, because of its simple design, geometry and, in turn, reduced cost if compared with well-established systems such as the Ion and Hall effect thrusters. REGULUS is a miniaturized electric low-thrust propulsion system developed by T4i, meant to be employed in very small satellites, which integrates the MEPT technology. REGULUS fits in a 1.5 U space, it can produce a total impulse of 3000 Ns powered with 50 W, it has a nominal thrust of 0.6 mN, and it can be operative up to 5 years in orbit. Apart from the MEPT thruster and its small dimension, REGULUS has another very interesting and disruptive innovation: it uses a solid propellant, iodine. Iodine brings enormous advantages to a propulsion system: (a) it can be stored as solid, (b) it has a high density (4900 kg/m^3), (c) no pressurized hardware are required, and (d) it is considered a green propellant. Nonetheless, the use of iodine brings some issues that need to be overcome in order to make it a reliable resource: (a) it is chemically reactive and corrosive with several metal materials used for space applications (e.g. aluminium alloys), (b) the thermal control is non-trivial as it shall grant the proper sublimation rate from the tank and avoid the re-condensation of iodine on the walls of tubes and valves. For this reason, this research program was focused on the study and development of a fluidic system to handle iodine propellant. The fluidic line has been realized, tested and integrated with the MEPT, under the supervision of T4i. The work was focused mainly on the thermal management of the fluidic line, in which the main requirement is to provide a mass flow rate of 0.1 mg/s. Specifically, a numerical model was developed to grasp the thermal and fluidic behaviour of REGULUS, to capture the physics behind it, and study those situations that cannot be tested in the laboratory (e.g., the temperature variation of the satellite) due to lack of equipment. At the same time, an experimental campaign was carried on characterizing the REGULUS fluidic module, so as to collect experience with iodine and find out the limits of the actual fluidic configuration. Both numerical analysis and testing were employed to detail a working operative procedure for the flight model fluidic line of REGULUS, to ensure the right conditions of pressure, temperature and mass flow rate during the In-Orbit-Demonstration. Then, a completely new re-design of the fluidic system was proposed, that improve the present design under several fundamental points of view and in order to attract a wider and new market. The total impulse was increased from 3000 Ns to 11000 Ns, storing more propellant and increasing the ratio between propellant and dry mass by more than a factor of 2. Furthermore, thermal management has been made more efficient, drastically reducing the total power consumption by more than 50 % and bringing the minimum operative temperature from 20 to -20 °C. Finally, several minor improvements have been suggested, like new suitable Commercial Off The Shelf (COTS) components and design choices.File | Dimensione | Formato | |
---|---|---|---|
tesi_definitiva_Marco_Minute.pdf
accesso solo da BNCF e BNCR
Dimensione
11.9 MB
Formato
Adobe PDF
|
11.9 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/218131
URN:NBN:IT:UNIPD-218131