This thesis investigates innovative technologies for upgrading biogas into biomethane while addressing the challenges associated with carbon dioxide (CO2) capture and utilization. Biogas, a renewable energy source produced through anaerobic digestion of organic materials, holds significant potential for reducing greenhouse gas emissions. However, its efficient transformation into high-purity biomethane requires advanced upgrading processes to remove impurities such as hydrogen sulfide, ammonia, and volatile organic compounds. The study begins with an in-depth analysis of existing biogas upgrading methods, including water scrubbing, chemical absorption, membrane separation, pressure swing adsorption, and cryogenic distillation. Among these, cryogenic distillation emerges as a promising technology due to its ability to produce high-purity biomethane while capturing liquid CO2 as a valuable byproduct. A simulation-based approach is employed to design and optimize a cryogenic distillation plant, focusing on methane recovery, energy efficiency, and operational feasibility. The economic and environmental implications of these technologies are assessed to ensure a holistic approach to sustainable energy production. A system based on cryogenic distillation integrated with a biogas upgrading system using polymeric membranes is explored in collaboration with AB Holding. This work culminates in the design, startup, and characterization of a pilot plant. The system aims to produce liquid carbon dioxide that complies with food-grade standards while simultaneously minimizing methane slip. The analysis is conducted using process simulations, which are compared with experimental data obtained from the pilot plant. The next phase of the work focuses on investigating the most influential parameters affecting the process and optimizing the overall system performance. This work contributes to advancing biogas upgrading technologies and integrating carbon capture solutions, highlighting their critical role in the transition to a circular economy and a carbon-neutral future. I would like to express my gratitude to AB Impianti Srl for their support and collaboration in the development of this project. A special thanks goes to Prof. Gioele Di Marcoberardino from the University of Brescia for his valuable guidance and supervision. This research work was funded by the PhD scholarship code DOT 1346224 CUP D81B21007540007, under the PON “Research and Innovation” 2014-2020 program.
Questa tesi indaga tecnologie innovative per l'upgrading del biogas in biometano, affrontando al contempo le sfide legate alla cattura e all'utilizzo dell'anidride carbonica (CO2). Il biogas, una fonte di energia rinnovabile prodotta attraverso la digestione anaerobica di materiali organici, offre un significativo potenziale per ridurre le emissioni di gas serra. Tuttavia, la sua trasformazione efficiente in biometano ad alta purezza richiede processi avanzati di upgrading per rimuovere impurità come solfuro di idrogeno, ammoniaca e composti organici volatili. Lo studio inizia con un'analisi approfondita dei metodi esistenti per l'upgrading del biogas, tra cui il lavaggio ad acqua, l'assorbimento chimico, la separazione a membrana, l'adsorbimento a oscillazione di pressione e la distillazione criogenica. Tra questi, la distillazione criogenica emerge come una tecnologia promettente grazie alla sua capacità di produrre biometano ad alta purezza e di catturare CO2 liquida come sottoprodotto di valore. Un approccio basato su simulazioni è stato utilizzato per progettare e ottimizzare un impianto di distillazione criogenica, concentrandosi sul recupero del metano, sull'efficienza energetica e sulla fattibilità operativa. Le implicazioni economiche e ambientali di queste tecnologie sono valutate per garantire un approccio olistico alla produzione sostenibile di energia. Un sistema basato sulla distillazione criogenica integrata con un sistema di upgrading del biogas mediante membrane polimeriche è stato esplorato in collaborazione con AB Holding, portando alla progettazione, avviamento e caratterizzazione di un impianto pilota. Questo sistema ha l'obiettivo di produrre anidride carbonica liquida conforme agli standard alimentari, riducendo al contempo il rilascio di metano. L'analisi è condotta attraverso simulazioni di processo, confrontate con i dati sperimentali ottenuti dall'impianto pilota. La fase successiva del lavoro si concentra sull'indagine dei parametri più influenti sul processo e sull'ottimizzazione del sistema complessivo. Questo lavoro contribuisce al progresso delle tecnologie di upgrading del biogas e all'integrazione di soluzioni per la cattura del carbonio, evidenziandone il ruolo cruciale nella transizione verso un'economia circolare e un futuro a emissioni zero. Desidero esprimere la mia gratitudine all'azienda AB Impianti Srl per il supporto e la collaborazione nello sviluppo di questo progetto. Un ringraziamento particolare va al Prof. Gioele Di Marcoberardino dell'Università degli Studi di Brescia per la sua preziosa guida e supervisione. Questo lavoro di ricerca è stato finanziato dalla borsa di dottorato codice DOT 1346224 CUP D81B21007540007, nell'ambito del PON “Ricerca e Innovazione” 2014-2020.
Tecnologie innovative per la produzione e l’utilizzo del biometano
GALLONI, MATTEO
2025
Abstract
This thesis investigates innovative technologies for upgrading biogas into biomethane while addressing the challenges associated with carbon dioxide (CO2) capture and utilization. Biogas, a renewable energy source produced through anaerobic digestion of organic materials, holds significant potential for reducing greenhouse gas emissions. However, its efficient transformation into high-purity biomethane requires advanced upgrading processes to remove impurities such as hydrogen sulfide, ammonia, and volatile organic compounds. The study begins with an in-depth analysis of existing biogas upgrading methods, including water scrubbing, chemical absorption, membrane separation, pressure swing adsorption, and cryogenic distillation. Among these, cryogenic distillation emerges as a promising technology due to its ability to produce high-purity biomethane while capturing liquid CO2 as a valuable byproduct. A simulation-based approach is employed to design and optimize a cryogenic distillation plant, focusing on methane recovery, energy efficiency, and operational feasibility. The economic and environmental implications of these technologies are assessed to ensure a holistic approach to sustainable energy production. A system based on cryogenic distillation integrated with a biogas upgrading system using polymeric membranes is explored in collaboration with AB Holding. This work culminates in the design, startup, and characterization of a pilot plant. The system aims to produce liquid carbon dioxide that complies with food-grade standards while simultaneously minimizing methane slip. The analysis is conducted using process simulations, which are compared with experimental data obtained from the pilot plant. The next phase of the work focuses on investigating the most influential parameters affecting the process and optimizing the overall system performance. This work contributes to advancing biogas upgrading technologies and integrating carbon capture solutions, highlighting their critical role in the transition to a circular economy and a carbon-neutral future. I would like to express my gratitude to AB Impianti Srl for their support and collaboration in the development of this project. A special thanks goes to Prof. Gioele Di Marcoberardino from the University of Brescia for his valuable guidance and supervision. This research work was funded by the PhD scholarship code DOT 1346224 CUP D81B21007540007, under the PON “Research and Innovation” 2014-2020 program.File | Dimensione | Formato | |
---|---|---|---|
Innovative technologies for the production and use of biomethane - Galloni.pdf
embargo fino al 15/07/2026
Dimensione
6.75 MB
Formato
Adobe PDF
|
6.75 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/218341
URN:NBN:IT:UNIBS-218341