Data ecosystems are interconnected networks where stakeholders use digital technologies to leverage large amounts of data in order to create value and drive innovation. They represent an emerging and impactful phenomenon, characterized by multi-stakeholder data sharing collaborations, often addressing grand societal challenges like environmental sustainability and scientific advancement. Despite some success, many data ecosystems have not met expectations. Unlike other ecosystems, they face unique challenges related to data governance, privacy, trust, and regulatory frameworks, further complicated by the rapid evolution of data technologies. These factors highlight the need to study European mobility data ecosystems as unique phenomena, shaped by an intricate interplay of technological and organizational mechanisms. While their importance is widely recognized, research still lacks a deeper understanding of how technological aspects interact with organizational and managerial dimensions. This dissertation addresses this gap, contributing both theoretically and practically to the emerging field of data ecosystems. The three empirical studies in this dissertation draw on the research context of the MobiDataLab project, a Horizon 2020 initiative aimed at developing a European data ecosystem for integrated mobility. Our data-driven approach combined in-depth semi-structured interviews and archival data, covering European data ecosystems, regulatory frameworks, participation models, and governance. The anonymized data was transcribed, imported into the QACDAS platform DEDOOSE, and analyzed using Grounded Theory to systematically organize the data, identify recurring themes, and develop new theoretical insights. The results reveal that not everyone in a data ecosystem shares data in the same way. This dissertation identifies key factors and mechanisms driving the diversity of sharing practices and examines when this diversity presents challenges or opportunities for data ecosystems. The studies highlight the role of data as boundary objects - adaptable enough to meet local needs while maintaining consistency across contexts - suggesting that different sharing practices depend on stakeholders’ willingness to share and on the tension between standardization and trust. These insights underpin three distinct studies exploring critical aspects of data ecosystems. The first study examines how stakeholders’ interpretations of data and data sharing practices shape the evolution of data ecosystems via roles and sharing behaviors which either foster innovation or cause stagnation. The second study explores the motivational, cognitive, and relational factors influencing data-sharing practices. It theorizes willingness to share in an ecosystem as a multidimensional interplay between stakeholders’ different social and utilitarian motivations, cognitive evaluations about risk-opportunity accounts, and relational dynamics. The third study focuses on the tension between standardization and trust, highlighting how efforts to reduce costs through standardization can increase the need for trust-based collaboration when rigid systems fail. Together, these studies provide valuable insights into the functioning, governance, and evolution of data ecosystems, adding to literatures on big data governance, digital and innovation ecosystems, and data sharing in complex organizational forms. As discussions on data privacy, governance, and sharing become increasingly relevant, this dissertation advances understanding of how data ecosystems can adapt to future challenges in a data-driven world.
Gli ecosistemi europei di dati sono reti interconnesse in cui gli stakeholder utilizzano i dati e le tecnologie digitali per creare valore e promuovere l'innovazione. Rappresentano un fenomeno emergente di grande impatto, caratterizzato da collaborazioni che facilitano la condivisione dei dati e che affrontano grandi sfide sociali. Nonostante alcuni successi, molti ecosistemi di dati non hanno soddisfatto le aspettative. A differenza di altri, gli ecosistemi europei di dati relativi alla mobilità affrontano sfide legate a governance, privacy, fiducia e regolamentazione, ulteriormente complicate dalla rapida evoluzione tecnologica. Sebbene la loro importanza sia ampiamente riconosciuta, la ricerca presenta ancora alcune lacune relative alla comprensione approfondita di come gli aspetti tecnologici interagiscano con le dimensioni organizzative e gestionali. Questa tesi mira a colmare tali lacune, offrendo un contributo teorico e pratico al settore degli ecosistemi di dati attraverso l'integrazione di prospettive diverse, evidenziando la necessità di esaminare le loro dinamiche da più angolazioni per comprenderne appieno la complessità. I tre studi empirici presentati in questa tesi si basano sul contesto di ricerca del progetto MobiDataLab, un'iniziativa Horizon 2020 volta a sviluppare un ecosistema europeo di dati per la mobilità integrata. Il nostro approccio ha combinato interviste semi-strutturate e dati d’archivio, coprendo ecosistemi europei, quadri normativi, modelli di partecipazione e governance. I dati anonimizzati sono stati trascritti, importati nella piattaforma QACDAS DEDOOSE e analizzati utilizzando la Grounded Theory per identificare temi ricorrenti e sviluppare nuovi spunti teorici. L'analisi dei dati ha rivelato che non tutti condividono i dati allo stesso modo: questa tesi identifica i principali fattori e meccanismi che guidano tale diversità nelle pratiche di condivisione. Gli studi evidenziano il ruolo dei dati come boundary objects - adattabili per soddisfare esigenze locali pur mantenendo coerenza tra i contesti - suggerendo che le diverse pratiche di condivisione dipendono dalla disponibilità degli stakeholder a condividere e dalla tensione tra standardizzazione e fiducia. Questi spunti costituiscono la base per tre studi distinti che esplorano aspetti critici degli ecosistemi di dati. Il primo studio esamina come le pratiche di condivisione influenzino l'evoluzione degli ecosistemi di dati, identificando ruoli e livelli di partecipazione in base all'equilibrio tra rischi e benefici, e mostrando come queste interazioni possano favorire l'innovazione o causare stagnazione. Il secondo studio esplora i fattori motivazionali, cognitivi e relazionali che influenzano le pratiche di condivisione dei dati, offrendo spunti su come diverse motivazioni, valutazioni cognitive e dinamiche relazionali possano plasmare la disponibilità degli stakeholder a condividere i dati. Il terzo studio si concentra sulla tensione tra standardizzazione e fiducia, evidenziando come gli sforzi per ridurre i costi attraverso la standardizzazione possano aumentare la necessità di collaborazione basata sulla fiducia. Questi studi offrono riflessioni sul funzionamento, la governance e l'evoluzione degli ecosistemi europei di dati per la mobilità integrata, contribuendo alla letteratura sugli ecosistemi digitali, di innovazione e di dati, sulla governance e sulla condivisione in forme organizzative complesse. In un'epoca in cui le discussioni relative alla privacy, alla governance e alla condivisione dei dati sono centrali, la tesi avanza la comprensione di come gli ecosistemi europei di dati per la mobilità possano adattarsi alle sfide future.
Affrontare le grandi sfide sociali attraverso la condivisione dei dati: studi sugli ecosistemi di dati nella mobilità Europea
RENZI, GIULIA
2025
Abstract
Data ecosystems are interconnected networks where stakeholders use digital technologies to leverage large amounts of data in order to create value and drive innovation. They represent an emerging and impactful phenomenon, characterized by multi-stakeholder data sharing collaborations, often addressing grand societal challenges like environmental sustainability and scientific advancement. Despite some success, many data ecosystems have not met expectations. Unlike other ecosystems, they face unique challenges related to data governance, privacy, trust, and regulatory frameworks, further complicated by the rapid evolution of data technologies. These factors highlight the need to study European mobility data ecosystems as unique phenomena, shaped by an intricate interplay of technological and organizational mechanisms. While their importance is widely recognized, research still lacks a deeper understanding of how technological aspects interact with organizational and managerial dimensions. This dissertation addresses this gap, contributing both theoretically and practically to the emerging field of data ecosystems. The three empirical studies in this dissertation draw on the research context of the MobiDataLab project, a Horizon 2020 initiative aimed at developing a European data ecosystem for integrated mobility. Our data-driven approach combined in-depth semi-structured interviews and archival data, covering European data ecosystems, regulatory frameworks, participation models, and governance. The anonymized data was transcribed, imported into the QACDAS platform DEDOOSE, and analyzed using Grounded Theory to systematically organize the data, identify recurring themes, and develop new theoretical insights. The results reveal that not everyone in a data ecosystem shares data in the same way. This dissertation identifies key factors and mechanisms driving the diversity of sharing practices and examines when this diversity presents challenges or opportunities for data ecosystems. The studies highlight the role of data as boundary objects - adaptable enough to meet local needs while maintaining consistency across contexts - suggesting that different sharing practices depend on stakeholders’ willingness to share and on the tension between standardization and trust. These insights underpin three distinct studies exploring critical aspects of data ecosystems. The first study examines how stakeholders’ interpretations of data and data sharing practices shape the evolution of data ecosystems via roles and sharing behaviors which either foster innovation or cause stagnation. The second study explores the motivational, cognitive, and relational factors influencing data-sharing practices. It theorizes willingness to share in an ecosystem as a multidimensional interplay between stakeholders’ different social and utilitarian motivations, cognitive evaluations about risk-opportunity accounts, and relational dynamics. The third study focuses on the tension between standardization and trust, highlighting how efforts to reduce costs through standardization can increase the need for trust-based collaboration when rigid systems fail. Together, these studies provide valuable insights into the functioning, governance, and evolution of data ecosystems, adding to literatures on big data governance, digital and innovation ecosystems, and data sharing in complex organizational forms. As discussions on data privacy, governance, and sharing become increasingly relevant, this dissertation advances understanding of how data ecosystems can adapt to future challenges in a data-driven world.File | Dimensione | Formato | |
---|---|---|---|
Renzi.pdf
accesso aperto
Dimensione
2.12 MB
Formato
Adobe PDF
|
2.12 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/223335
URN:NBN:IT:UNIMORE-223335