Advanced nanotechnologies allow the manipulation of molecules with nanoscale precision, and can be used for the production of sensitive devices for protein or nucleic acids detection for clinical use. DNA nano-assemblies are an excellent route for ultrasensitive DNA/RNA detection and for DNA-protein conjugated immobilization, for bio interaction studies, through the careful detection of single strand DNA (ssDNA) hybridization with complementary target sequences. For DNA nanoscale devices, the control of DNA surface density and conformation is crucial in order to achieve the highest reproducibility and to optimize the sensitivity. An improved understanding of the chemical and physical properties of the nanoscale DNA assemblies and of the recognition process is necessary for device performance optimization. In this framework, we ?rst focused on the understanding of the mechanisms that optimize and limit hybridization e?ciency in variable density DNA monolayers. We performed Atomic Force Microscopy (AFM) assisted-Nanografting and AFM measurements to realize reference patches into a DNA self-assembled monolayer, and to carefully monitoring DNA hybridization. We then performed molecular dynamics (MD) simulations, in collaboration with a theoretical group, to capture the energetic hybridization limit in high dense DNA monolayers. We found that no more than 44% of the substrate ssDNA can be successfully hybridized, limited by molecular and electrostatic crowding e?ect connected to the highly charged nature of DNA. To further capture the conformational properties of DNA monolayers, and their relation to biorecognition, we characterized the ionic strength e?ect on ssDNA nano-assembled of di?erent density by careful AFM topography measurements in liquid environment. We con?ned ssDNA brushes with controlled surface densities within a bio-repellent self-assembled monolayer. We then monitored the topographic brush height variation upon changing salt type (NaCl, KCl, CaCl2 and MgCl2 ) and concentration inside the liquid cell. We showed that the measured height is related to scaling law of salt concentration, in agreement with the theory of polyelectrolyte brush. Using this scaling model to ?t our experimental data, we quanti?ed structural parameters such as the average internucleotide distance (d) for ssDNA brushes of di?erent, estimated surface density ?, featuring a strong dependence of d on di?erent salts species. This result is crucial for the structural designing of synthetic nucleic acids and, more generally, nucleic acid-based devices with controlled physical behaviors. In the last part of the work, we apply all knowledge learned on hybridization mechanism to a clinical problem. We studied the hybridization mechanism to distinguish single base mismatch and to detect at high sensitivity, without any labeling and ampli?cation, microRNAs (miRNAs) connected to hearth failure disease. Our results demonstrate that the AFM nanolithography can serve as a sensitive and selective readout system to discriminate single nucleotide polymorphism. Also, our device allows for the detection of more than one sequence of miRNAs on a same assay with target in picomolar (100pM) range concentration.
Conformational properties of variable density DNA nanobrushes
-
2015
Abstract
Advanced nanotechnologies allow the manipulation of molecules with nanoscale precision, and can be used for the production of sensitive devices for protein or nucleic acids detection for clinical use. DNA nano-assemblies are an excellent route for ultrasensitive DNA/RNA detection and for DNA-protein conjugated immobilization, for bio interaction studies, through the careful detection of single strand DNA (ssDNA) hybridization with complementary target sequences. For DNA nanoscale devices, the control of DNA surface density and conformation is crucial in order to achieve the highest reproducibility and to optimize the sensitivity. An improved understanding of the chemical and physical properties of the nanoscale DNA assemblies and of the recognition process is necessary for device performance optimization. In this framework, we ?rst focused on the understanding of the mechanisms that optimize and limit hybridization e?ciency in variable density DNA monolayers. We performed Atomic Force Microscopy (AFM) assisted-Nanografting and AFM measurements to realize reference patches into a DNA self-assembled monolayer, and to carefully monitoring DNA hybridization. We then performed molecular dynamics (MD) simulations, in collaboration with a theoretical group, to capture the energetic hybridization limit in high dense DNA monolayers. We found that no more than 44% of the substrate ssDNA can be successfully hybridized, limited by molecular and electrostatic crowding e?ect connected to the highly charged nature of DNA. To further capture the conformational properties of DNA monolayers, and their relation to biorecognition, we characterized the ionic strength e?ect on ssDNA nano-assembled of di?erent density by careful AFM topography measurements in liquid environment. We con?ned ssDNA brushes with controlled surface densities within a bio-repellent self-assembled monolayer. We then monitored the topographic brush height variation upon changing salt type (NaCl, KCl, CaCl2 and MgCl2 ) and concentration inside the liquid cell. We showed that the measured height is related to scaling law of salt concentration, in agreement with the theory of polyelectrolyte brush. Using this scaling model to ?t our experimental data, we quanti?ed structural parameters such as the average internucleotide distance (d) for ssDNA brushes of di?erent, estimated surface density ?, featuring a strong dependence of d on di?erent salts species. This result is crucial for the structural designing of synthetic nucleic acids and, more generally, nucleic acid-based devices with controlled physical behaviors. In the last part of the work, we apply all knowledge learned on hybridization mechanism to a clinical problem. We studied the hybridization mechanism to distinguish single base mismatch and to detect at high sensitivity, without any labeling and ampli?cation, microRNAs (miRNAs) connected to hearth failure disease. Our results demonstrate that the AFM nanolithography can serve as a sensitive and selective readout system to discriminate single nucleotide polymorphism. Also, our device allows for the detection of more than one sequence of miRNAs on a same assay with target in picomolar (100pM) range concentration.I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/245686
URN:NBN:IT:UNITS-245686