Il presente lavoro riguarda la descrizione di un simulatore di campo fotovoltaico (in seguito simulatore). Il simulatore ਠun convertitore elettronico di potenza che, alimentato dalla rete elettrica, riproduce la caratteristica tensione corrente di un campo fotovoltaico (insieme di moduli fotovoltaici connessi in serie e in parallelo) operante in condizioni climatiche di temperatura e irraggiamento arbitrarie. Il nuovo dispositivo verrà  impiegato nell'ambito del laboratorio fotovoltaico cui fa riferimento l'impianto in via di realizzazione sul tetto dell'edificio che ospita il Dipartimento dei Materiali e delle Risorse Naturali dell'Università  di Trieste. Il simulatore viene proposto come utile strumento per i progettisti di dispositivi solari funzionanti in sistemi fotovoltaici connessi in rete. In particolare, il simulatore permetterà  di prevedere il funzionamento di nuovi moduli fotovoltaici operanti in condizioni di ombreggiamento arbitrario e inseriti in un sistema fotovoltaico reale. L'uso del simulatore sarà  particolarmente efficace nel caso di simulazioni di tecnologie in film sottile come, ad esempio, il silicio amorfo, il tellururo di cadmio, ecc. Il simulatore sarà  anche necessario per testare i componenti che fanno parte di un sistema fotovoltaico connesso in rete, con particolare riferimento ai sistemi di condizionamento della potenza (detti anche inverter). Tali sistemi, oltre a convertire la tensione continua prodotta dai moduli fotovoltaici in una tensione compatibile e sincronizzata con quella della rete, devono garantire istante per istante l'inseguimento del punto di massima potenza estraibile dal campo fotovoltaico cui sono connessi. Il lavoro ਠstato suddiviso in cinque capitoli. Il primo capitolo fornisce una breve descrizione dello stato dell'arte e di alcune aspetti economici relativi alla tecnologia fotovoltaica. Nel secondo capitolo vengono richiamati il modello classico di una cella solare e le definizioni riguardo le sue caratteristiche principali (punto di massima potenza, efficienza, fill factor, ecc.). Nello stesso capitolo un'overview sui materiali e sulle tecnologie utilizzate nella realizzazione dei dispositivi fotovoltaici divide, come suggerito da Martin Green, le celle solari in tre diverse generazioni: la prima comprende i dispositivi realizzati in silicio cristallino (mono e policrisallino), la seconda quelli in film sottile (in silicio amorfo, tellururo di cadmio CdTe, diseleniuro di rame e indio CIS, diseleniuro di rame, indio e gallio CIGS, diseleniuro di rame, indio, gallio e zolfo CIGSS) e le celle di Graetzel, e la terza le celle multigiunzione, a banda intermedia e quelle organiche. Nel capitolo tre viene fornita una descrizione dei componenti costituenti un sistema fotovoltaico connesso in rete e viene proposto un nuovo metodo per la determinazione delle caratteristiche corrente tensione e potenza tensione prodotte da dispositivi fotovoltaici. Il metodo risulta efficace in quanto non necessita di misure sperimentali da effetture sui diversi dispositivi. I dati forniti nei comuni data sheet che vengono forniti a corredo dei moduli fotovoltaici sono sufficienti a determinarne il comportamento al variare della temperatura di funzionamento e del livello di radiazione solare. L'efficienza di un sistema fotovoltaico (Balance Of the System, BOS) viene calcolata nel capitolo quattro. Particolare enfasi viene data all'effetto di mismatching che ਠtanto pi๠importante quanto pi๠ਠelevato il livello di ombreggiamento presente sul piano dei moduli fotovoltaici costituenti l'impianto. Infine, l'ultimo capitolo riguarda la descrizione del simulatore e delle sue applicazioni.

A hardware field simulator for photovoltaic materials applications.

-
2008

Abstract

Il presente lavoro riguarda la descrizione di un simulatore di campo fotovoltaico (in seguito simulatore). Il simulatore ਠun convertitore elettronico di potenza che, alimentato dalla rete elettrica, riproduce la caratteristica tensione corrente di un campo fotovoltaico (insieme di moduli fotovoltaici connessi in serie e in parallelo) operante in condizioni climatiche di temperatura e irraggiamento arbitrarie. Il nuovo dispositivo verrà  impiegato nell'ambito del laboratorio fotovoltaico cui fa riferimento l'impianto in via di realizzazione sul tetto dell'edificio che ospita il Dipartimento dei Materiali e delle Risorse Naturali dell'Università  di Trieste. Il simulatore viene proposto come utile strumento per i progettisti di dispositivi solari funzionanti in sistemi fotovoltaici connessi in rete. In particolare, il simulatore permetterà  di prevedere il funzionamento di nuovi moduli fotovoltaici operanti in condizioni di ombreggiamento arbitrario e inseriti in un sistema fotovoltaico reale. L'uso del simulatore sarà  particolarmente efficace nel caso di simulazioni di tecnologie in film sottile come, ad esempio, il silicio amorfo, il tellururo di cadmio, ecc. Il simulatore sarà  anche necessario per testare i componenti che fanno parte di un sistema fotovoltaico connesso in rete, con particolare riferimento ai sistemi di condizionamento della potenza (detti anche inverter). Tali sistemi, oltre a convertire la tensione continua prodotta dai moduli fotovoltaici in una tensione compatibile e sincronizzata con quella della rete, devono garantire istante per istante l'inseguimento del punto di massima potenza estraibile dal campo fotovoltaico cui sono connessi. Il lavoro ਠstato suddiviso in cinque capitoli. Il primo capitolo fornisce una breve descrizione dello stato dell'arte e di alcune aspetti economici relativi alla tecnologia fotovoltaica. Nel secondo capitolo vengono richiamati il modello classico di una cella solare e le definizioni riguardo le sue caratteristiche principali (punto di massima potenza, efficienza, fill factor, ecc.). Nello stesso capitolo un'overview sui materiali e sulle tecnologie utilizzate nella realizzazione dei dispositivi fotovoltaici divide, come suggerito da Martin Green, le celle solari in tre diverse generazioni: la prima comprende i dispositivi realizzati in silicio cristallino (mono e policrisallino), la seconda quelli in film sottile (in silicio amorfo, tellururo di cadmio CdTe, diseleniuro di rame e indio CIS, diseleniuro di rame, indio e gallio CIGS, diseleniuro di rame, indio, gallio e zolfo CIGSS) e le celle di Graetzel, e la terza le celle multigiunzione, a banda intermedia e quelle organiche. Nel capitolo tre viene fornita una descrizione dei componenti costituenti un sistema fotovoltaico connesso in rete e viene proposto un nuovo metodo per la determinazione delle caratteristiche corrente tensione e potenza tensione prodotte da dispositivi fotovoltaici. Il metodo risulta efficace in quanto non necessita di misure sperimentali da effetture sui diversi dispositivi. I dati forniti nei comuni data sheet che vengono forniti a corredo dei moduli fotovoltaici sono sufficienti a determinarne il comportamento al variare della temperatura di funzionamento e del livello di radiazione solare. L'efficienza di un sistema fotovoltaico (Balance Of the System, BOS) viene calcolata nel capitolo quattro. Particolare enfasi viene data all'effetto di mismatching che ਠtanto pi๠importante quanto pi๠ਠelevato il livello di ombreggiamento presente sul piano dei moduli fotovoltaici costituenti l'impianto. Infine, l'ultimo capitolo riguarda la descrizione del simulatore e delle sue applicazioni.
2008
en
caratteristiche tensione corrente e tensione potenza, sistemi grid connected
current voltage and power voltage characteristics
fotovoltaico, simulatore, materiali, ombreggiamento
INGEGNERIA E SCIENZA DEI MATERIALI
photovoltaic, hardware field simulator, materials, shading effects
Università degli Studi di Trieste
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/250246
Il codice NBN di questa tesi è URN:NBN:IT:UNITS-250246