This thesis is devoted to the study of the growth of III-V nanowires (NWs) by catalyst assisted and catalyst free molecular beam epitaxy (MBE). The nanostructures have been routinely characterized by scanning electron microscopy (SEM) and, to a minor extent by transmission electron microscopy (TEM). X-ray photoemission spectroscopy (XPS), scanning photoemission microscopy (SPEM), extended X-ray absrorption fi ne structure analysis (EXAFS), photoluminescence (PL) and trans- port measurements have given an important contribution on specifi c topics. The first section of this thesis reports on GaAs, InAs, and InGaAs NWs growth by Au assisted MBE. A substrate treatment is proposed that improves uniformity in the NWS morphology. Thanks to a careful statistical analysis of the NWs shape and dimensions as a function of growth temperature and duration, evidence is found of radial growth of the NWs taking place together with the axial growth at the tip. This eff ect is interpreted in term of temperature dependent diff usion length of the cations on the NWs lateral surface. The control of the NWs radial growth allowed to grow core shell InGaAs/GaAs NWs, displaying superior optical quality. A new procedure is proposed to protect NWs surface from air exposure. This procedure allowed to perform ex-situ SPEM studies of electronic properties of the NWs. The second part of this thesis is devoted to Au-free NWs growth. GaAs and InAs NWs were successfully grown for the first time using Mn as catalyst. Incorporation of Mn in the NW is studied using EXAFS technique. It is shown that Mn atoms are incorporated in the body of GaAs NWs. Use of low growth temperature is suggested in order to improve the Mn incorporation inside GaAs NWs and obtain NWs with magnetic properties. Finally, growth of GaAs and InAs NWs on cleaved Si subtrate is demonstrated without the use of any outside metal catalyst. Two kinds of nanowires have been obtained. The experimental findings suggest that the two types of nanowires grow after di fferent growth processes.
III-V semiconducting nanowires by molecular beam epitaxy
-
2009
Abstract
This thesis is devoted to the study of the growth of III-V nanowires (NWs) by catalyst assisted and catalyst free molecular beam epitaxy (MBE). The nanostructures have been routinely characterized by scanning electron microscopy (SEM) and, to a minor extent by transmission electron microscopy (TEM). X-ray photoemission spectroscopy (XPS), scanning photoemission microscopy (SPEM), extended X-ray absrorption fi ne structure analysis (EXAFS), photoluminescence (PL) and trans- port measurements have given an important contribution on specifi c topics. The first section of this thesis reports on GaAs, InAs, and InGaAs NWs growth by Au assisted MBE. A substrate treatment is proposed that improves uniformity in the NWS morphology. Thanks to a careful statistical analysis of the NWs shape and dimensions as a function of growth temperature and duration, evidence is found of radial growth of the NWs taking place together with the axial growth at the tip. This eff ect is interpreted in term of temperature dependent diff usion length of the cations on the NWs lateral surface. The control of the NWs radial growth allowed to grow core shell InGaAs/GaAs NWs, displaying superior optical quality. A new procedure is proposed to protect NWs surface from air exposure. This procedure allowed to perform ex-situ SPEM studies of electronic properties of the NWs. The second part of this thesis is devoted to Au-free NWs growth. GaAs and InAs NWs were successfully grown for the first time using Mn as catalyst. Incorporation of Mn in the NW is studied using EXAFS technique. It is shown that Mn atoms are incorporated in the body of GaAs NWs. Use of low growth temperature is suggested in order to improve the Mn incorporation inside GaAs NWs and obtain NWs with magnetic properties. Finally, growth of GaAs and InAs NWs on cleaved Si subtrate is demonstrated without the use of any outside metal catalyst. Two kinds of nanowires have been obtained. The experimental findings suggest that the two types of nanowires grow after di fferent growth processes.I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/253056
URN:NBN:IT:UNITS-253056