Small-size ground-based telescopes can effectively be used to look for transiting rocky planets around nearby low-mass M stars using the photometric transit method. Since 2008, a consortium of the Astrophysical Observatory of Torino (OATo-INAF) and the Astronomical Observatory of the Autonomous Region of Aosta Valley (OAVdA) have been preparing for the long-term photometric survey APACHE (A PAthway toward the Characterization of Habitable Earths), aimed at finding transiting small-size planets around thousands of nearby early and mid-M dwarfs. APACHE uses an array of five dedicated and identical 40-cm Ritchey-Chretien telescopes and its routine science operations started at the beginning of summer 2012. Here I present the results of the `pilot study', a year-long photometric monitoring campaign of a sample of 23 nearby dM stars, and of the APACHE survey first year data. In these studies, I set out to (i) demonstrate the sensitivity to > 2 Rearth transiting planets with periods of up to a few days around our programme stars, through a two-fold approach that combines a characterization of the statistical noise properties of our photometry with the determination of transit detection probabilities via simulations; and (ii), where possible, improves our knowledge of some astrophysical properties (e.g. activity, rotation) of our targets by combining our differential photometric measurements with spectroscopic information from the long-term programme GAPS with the HARPS-N spectrograph on the Telescopio Nazionale Galileo. Furthermore, cool M dwarfs within a few tens of parsecs from the Sun are becoming the focus of dedicated observational programs in the realm of exoplanet astrophysics that will make use of astrometric measurements. I present numerical simulations to gauge the Gaia potential for precision astrometry of exoplanets orbiting a sample of known dM stars within ~ 30 pc from the Sun. I then investigate some aspects of the synergy between the astrometric data expected from the Gaia mission on nearby M dwarfs and the APACHE program.

Photometric transit search for planets around cool stars from the Western Italian Alps: the APACHE survey

-
2014

Abstract

Small-size ground-based telescopes can effectively be used to look for transiting rocky planets around nearby low-mass M stars using the photometric transit method. Since 2008, a consortium of the Astrophysical Observatory of Torino (OATo-INAF) and the Astronomical Observatory of the Autonomous Region of Aosta Valley (OAVdA) have been preparing for the long-term photometric survey APACHE (A PAthway toward the Characterization of Habitable Earths), aimed at finding transiting small-size planets around thousands of nearby early and mid-M dwarfs. APACHE uses an array of five dedicated and identical 40-cm Ritchey-Chretien telescopes and its routine science operations started at the beginning of summer 2012. Here I present the results of the `pilot study', a year-long photometric monitoring campaign of a sample of 23 nearby dM stars, and of the APACHE survey first year data. In these studies, I set out to (i) demonstrate the sensitivity to > 2 Rearth transiting planets with periods of up to a few days around our programme stars, through a two-fold approach that combines a characterization of the statistical noise properties of our photometry with the determination of transit detection probabilities via simulations; and (ii), where possible, improves our knowledge of some astrophysical properties (e.g. activity, rotation) of our targets by combining our differential photometric measurements with spectroscopic information from the long-term programme GAPS with the HARPS-N spectrograph on the Telescopio Nazionale Galileo. Furthermore, cool M dwarfs within a few tens of parsecs from the Sun are becoming the focus of dedicated observational programs in the realm of exoplanet astrophysics that will make use of astrometric measurements. I present numerical simulations to gauge the Gaia potential for precision astrometry of exoplanets orbiting a sample of known dM stars within ~ 30 pc from the Sun. I then investigate some aspects of the synergy between the astrometric data expected from the Gaia mission on nearby M dwarfs and the APACHE program.
2014
en
Astrofisica
Astrometria
Esopianeti
Fotometria
Missione spaziale GAIA
Nane rosse
SCUOLA DI DOTTORATO DI RICERCA IN FISICA
Transiti planetari
Università degli Studi di Trieste
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/266564
Il codice NBN di questa tesi è URN:NBN:IT:UNITS-266564