Gli incendi boschivi rappresentano uno dei maggiori problemi ambientali nella regione Mediterranea con vaste superfici colpite ogni estate. Una stima dell'impatto ambientale degli incendi (a breve e a lungo termine) richiede la raccolta di informazioni accurate post-incendio relative al tipo di incendio, all'intensità , alla rigenerazione forestale ed al ripristino della vegetazione. L'utilizzo di tecniche avanzate di telerilevamento puಠfornire un valido strumento per lo studio di questi fenomeni. L'importanza di queste ricerche ਠstata pi๠volte sottolineata dalla Commissione Europea che si ਠconcentrata sullo studio degli incendi boschivi ed il loro effetto sulla vegetazione attraverso lo sviluppo di adeguati metodi di stima dell'impatto e di mitigazione. Scopo di questo lavoro ਠla stima dell'impatto post-incendio sulla vegetazione in ambiente Mediterraneo per mezzo di immagini satellitari ad alta risoluzione, di rilievi a terra e mediante tecniche avanzate di analisi dei dati. Il lavoro ha riguardato lo sviluppo di un sistema per l'integrazione di dati telerilevati ad altissima risoluzione spaziale e spettrale. Per la stima dell'impatto a breve termine, un modello di classificazione ad oggetti ਠstato sviluppato utilizzando immagini Ikonos ad altissima risoluzione spaziale per cartografare il tipo di incendio, differenziando l'incendio radente dall'incendio di chioma. I risultati mostrano che la classificazione ad oggetti potrebbe essere utilizzata per distinguere con elevata accuratezza (87% di accuratezza complessiva) le due tipologie di incendio, in particolare nei boschi Mediterranei aperti. àˆ stata inoltre valutata la capacità della classificazione ad oggetti di distinguere e cartografare tre livelli di intensità del fuoco utilizzando le immagini Ikonos e l'accuratezza del risultato ਠstimata all' 83%. Per la stima dell'impatto a lungo termine, la mappatura della rigenerazione post-incendio (pino) e la ripresa della vegetazione arbustiva sono state valutate mediante tre approcci: 1) la classificazione ad oggetti di immagini ad altissima risoluzione QuickBird che ha permesso di mappare la ripresa della vegetazione e l'impatto sulla copertura a seguito dell'incendio distinguendo due livelli di intensità dell'incendio (accuratezza della classificazione 86%). 2) l'analisi statistica di dati iperspettrali rilevati in campo che ha permesso una riduzione del 97% del volume di dati e la selezione delle migliori 14 bande per discriminare l'età e le specie di pino e le 18 migliori bande per la caratterizzazione delle specie arbustive. Successivamente, i dati iperspettrali Hyperion sono stati utlizzati per mappare la rigenerazione forestale e la ripresa della vegetazione. L'accuratezza complessiva della classificazione ਠstata del 75.1% considerando due diverse specie di pino ed altre specie vegetali. 3) una classificazione ad oggetti che ha combinato l'analisi dei dati QuickBird ed Hyperion. Si ਠregistrato un aumento dell'accuratezza della classificazione pari all'8.06% rispetto all'utilizzo dei soli dati Hyperion. Complessivamente, si osserva che strumenti avanzati di telerilevamento consentono di raccogliere le informazioni relative alle aree incendiate, la rigenerazione forestale e la ripresa della vegetazione in modo accurato e vantaggioso in termini di costi e tempi.
An investigation in the use of advanced remote sensing and geographic information system techniques for post-fire impact assessment on vegetation.
-
2008
Abstract
Gli incendi boschivi rappresentano uno dei maggiori problemi ambientali nella regione Mediterranea con vaste superfici colpite ogni estate. Una stima dell'impatto ambientale degli incendi (a breve e a lungo termine) richiede la raccolta di informazioni accurate post-incendio relative al tipo di incendio, all'intensità , alla rigenerazione forestale ed al ripristino della vegetazione. L'utilizzo di tecniche avanzate di telerilevamento puಠfornire un valido strumento per lo studio di questi fenomeni. L'importanza di queste ricerche ਠstata pi๠volte sottolineata dalla Commissione Europea che si ਠconcentrata sullo studio degli incendi boschivi ed il loro effetto sulla vegetazione attraverso lo sviluppo di adeguati metodi di stima dell'impatto e di mitigazione. Scopo di questo lavoro ਠla stima dell'impatto post-incendio sulla vegetazione in ambiente Mediterraneo per mezzo di immagini satellitari ad alta risoluzione, di rilievi a terra e mediante tecniche avanzate di analisi dei dati. Il lavoro ha riguardato lo sviluppo di un sistema per l'integrazione di dati telerilevati ad altissima risoluzione spaziale e spettrale. Per la stima dell'impatto a breve termine, un modello di classificazione ad oggetti ਠstato sviluppato utilizzando immagini Ikonos ad altissima risoluzione spaziale per cartografare il tipo di incendio, differenziando l'incendio radente dall'incendio di chioma. I risultati mostrano che la classificazione ad oggetti potrebbe essere utilizzata per distinguere con elevata accuratezza (87% di accuratezza complessiva) le due tipologie di incendio, in particolare nei boschi Mediterranei aperti. àˆ stata inoltre valutata la capacità della classificazione ad oggetti di distinguere e cartografare tre livelli di intensità del fuoco utilizzando le immagini Ikonos e l'accuratezza del risultato ਠstimata all' 83%. Per la stima dell'impatto a lungo termine, la mappatura della rigenerazione post-incendio (pino) e la ripresa della vegetazione arbustiva sono state valutate mediante tre approcci: 1) la classificazione ad oggetti di immagini ad altissima risoluzione QuickBird che ha permesso di mappare la ripresa della vegetazione e l'impatto sulla copertura a seguito dell'incendio distinguendo due livelli di intensità dell'incendio (accuratezza della classificazione 86%). 2) l'analisi statistica di dati iperspettrali rilevati in campo che ha permesso una riduzione del 97% del volume di dati e la selezione delle migliori 14 bande per discriminare l'età e le specie di pino e le 18 migliori bande per la caratterizzazione delle specie arbustive. Successivamente, i dati iperspettrali Hyperion sono stati utlizzati per mappare la rigenerazione forestale e la ripresa della vegetazione. L'accuratezza complessiva della classificazione ਠstata del 75.1% considerando due diverse specie di pino ed altre specie vegetali. 3) una classificazione ad oggetti che ha combinato l'analisi dei dati QuickBird ed Hyperion. Si ਠregistrato un aumento dell'accuratezza della classificazione pari all'8.06% rispetto all'utilizzo dei soli dati Hyperion. Complessivamente, si osserva che strumenti avanzati di telerilevamento consentono di raccogliere le informazioni relative alle aree incendiate, la rigenerazione forestale e la ripresa della vegetazione in modo accurato e vantaggioso in termini di costi e tempi.I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/272593
URN:NBN:IT:UNITS-272593