Questa tesi, intitolata Visione Tridimensionale per la stima di Struttura e Moto, tratta di tecniche di Visione Artificiale per la stima delle proprietà geometriche del mondo tridimensionale a partire da immagini numeriche. Queste proprietà sono essenziali per il riconoscimento e la classificazione di oggetti, la navigazione di veicoli mobili autonomi, il reverse engineering e la sintesi di ambienti virtuali. In particolare, saranno descritti i moduli coinvolti nel calcolo della struttura della scena a partire dalle immagini, e verranno presentati contributi originali nei seguenti campi. Rettificazione di immagini steroscopiche. Viene presentato un nuovo algoritmo per la rettificazione, il quale trasforma una coppia di immagini stereoscopiche in maniera che punti corrispondenti giacciano su linee orizzontali con lo stesso indice. Prove sperimentali dimostrano il corretto comportamento del metodo, come pure la trascurabile perdita di accuratezza nella ricostruzione tridimensionale quando questa sia ottenuta direttamente dalle immagini rettificate. Calcolo delle corrispondenze in immagini stereoscopiche. Viene analizzato il problema della stereovisione e viene presentato un un nuovo ed efficiente algoritmo per l'identificazione di coppie di punti corrispondenti, capace di calcolare in modo robusto la disparità stereoscopica anche in presenza di occlusioni. L'algoritmo, chiamato SMW, usa uno schema multi-finestra adattativo assieme al controllo di coerenza destra-sinistra per calcolare la disparità e l'incertezza associata. Gli esperimenti condotti con immagini sintetiche e reali mostrano che SMW sortisce un miglioramento in accuratezza ed efficienza rispetto a metodi simili Inseguimento di punti salienti. L'inseguitore di punti salienti di Shi-Tomasi- Kanade viene migliorato introducendo uno schema automatico per lo scarto di punti spuri basato sulla diagnostica robusta dei campioni periferici ( outliers ). Gli esperimenti con immagini sintetiche e reali confermano il miglioramento rispetto al metodo originale, sia qualitativamente che quantitativamente. Ricostruzione non calibrata. Viene presentata una rassegna ragionata dei metodi per la ricostruzione di un modello tridimensionale della scena, a partire da una telecamera che si muove liberamente e di cui non sono noti i parametri interni. Il contributo consiste nel fornire una visione critica e unificata delle pi๠recenti tecniche. Una tale rassegna non esiste ancora in letterarura. Moto tridimensionale. Viene proposto un algoritmo robusto per registrate e calcolare le corrispondenze in due insiemi di punti tridimensionali nei quali vi sia un numero significativo di elementi mancanti. Il metodo, chiamato RICP, sfrutta la stima robusta con la Minima Mediana dei Quadrati per eliminare l'effetto dei campioni periferici. Il confronto sperimentale con una tecnica simile, ICP, mostra la superiore robustezza e affidabilità di RICP.
THREE-DIMENSIONAL VISION FOR STRUCTURE AND MOTION ESTIMATION
-
2015
Abstract
Questa tesi, intitolata Visione Tridimensionale per la stima di Struttura e Moto, tratta di tecniche di Visione Artificiale per la stima delle proprietà geometriche del mondo tridimensionale a partire da immagini numeriche. Queste proprietà sono essenziali per il riconoscimento e la classificazione di oggetti, la navigazione di veicoli mobili autonomi, il reverse engineering e la sintesi di ambienti virtuali. In particolare, saranno descritti i moduli coinvolti nel calcolo della struttura della scena a partire dalle immagini, e verranno presentati contributi originali nei seguenti campi. Rettificazione di immagini steroscopiche. Viene presentato un nuovo algoritmo per la rettificazione, il quale trasforma una coppia di immagini stereoscopiche in maniera che punti corrispondenti giacciano su linee orizzontali con lo stesso indice. Prove sperimentali dimostrano il corretto comportamento del metodo, come pure la trascurabile perdita di accuratezza nella ricostruzione tridimensionale quando questa sia ottenuta direttamente dalle immagini rettificate. Calcolo delle corrispondenze in immagini stereoscopiche. Viene analizzato il problema della stereovisione e viene presentato un un nuovo ed efficiente algoritmo per l'identificazione di coppie di punti corrispondenti, capace di calcolare in modo robusto la disparità stereoscopica anche in presenza di occlusioni. L'algoritmo, chiamato SMW, usa uno schema multi-finestra adattativo assieme al controllo di coerenza destra-sinistra per calcolare la disparità e l'incertezza associata. Gli esperimenti condotti con immagini sintetiche e reali mostrano che SMW sortisce un miglioramento in accuratezza ed efficienza rispetto a metodi simili Inseguimento di punti salienti. L'inseguitore di punti salienti di Shi-Tomasi- Kanade viene migliorato introducendo uno schema automatico per lo scarto di punti spuri basato sulla diagnostica robusta dei campioni periferici ( outliers ). Gli esperimenti con immagini sintetiche e reali confermano il miglioramento rispetto al metodo originale, sia qualitativamente che quantitativamente. Ricostruzione non calibrata. Viene presentata una rassegna ragionata dei metodi per la ricostruzione di un modello tridimensionale della scena, a partire da una telecamera che si muove liberamente e di cui non sono noti i parametri interni. Il contributo consiste nel fornire una visione critica e unificata delle pi๠recenti tecniche. Una tale rassegna non esiste ancora in letterarura. Moto tridimensionale. Viene proposto un algoritmo robusto per registrate e calcolare le corrispondenze in due insiemi di punti tridimensionali nei quali vi sia un numero significativo di elementi mancanti. Il metodo, chiamato RICP, sfrutta la stima robusta con la Minima Mediana dei Quadrati per eliminare l'effetto dei campioni periferici. Il confronto sperimentale con una tecnica simile, ICP, mostra la superiore robustezza e affidabilità di RICP.I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/274718
URN:NBN:IT:UNITS-274718