In questo lavoro ho affrontato lo studio della produzione dal vuoto di particelle (elettroni, posi troni e fotoni) in presenza di campi magnetici intensi e lentamente variabili nel tempo. Per "campi magnetici intensi" intendo campi magnetici la cui intensità ਠmolto maggiore del valore Ber = m2c3 /(ne) = 4.4 x 1013 gauss che corrisponde al valore minimo dell'ampiezza che un campo magnetico deve avere affinchà© risulti energeticamente possibile la creazione dal vuoto di una coppia e- - e+. Tali campi magnetici non possono essere prodotti in laboratorio, tuttavia, come mostrano certe evidenze indirette e simulazioni numeriche, essi possono essere presenti attorno a certi oggetti astrofisici compatti (stelle di neutroni estremamente magnetizzate dette magnetar o buchi neri massicci). Per questo motivo, nel presente lavoro ho assunto che le sorgenti dei campi magnetici in gioco sono sempre oggetti astrofisici compatti del tipo appena descritto. In particolare, ho tentato di applicare i miei risultati ai cosiddetti Gamma-Ray Bursts (GRB) e ai loro spettri energetici. I G RB sono impulsi molto intensi di raggi gamma soft che sono rivelati in media una volta al giorno dai nostri satelliti e che, si pensa, sono originati proprio attorno a sorgenti astrofisiche come buchi neri massicci o, secondo alcuni modelli, magnetar. Il mio punto di vista ਠquello di un fisico teorico e non di un astrofisico e, pertanto, i modelli che utilizzo sono versioni molto semplificate della realtà . Tuttavia, alcuni degli spettri di fotoni che ho calcolato mostrano somiglianze qualitative con i corrispondenti spettri energetici sperimentali dei GRB. Da un punto di vista dei risultati, la tesi puಠessere divisa in tre parti distinte: la prima riguarda la produzione di coppie e- -e+ in presenza di un campo magnetico intenso e lentamente variabile in varie configurazioni, la seconda riguarda la produzione di fotoni in presenza di un campo magnetico intenso e lentamente rotante e, infine, la terza riguarda gli effetti che il campo gravitazionale dell'oggetto astrofisico compatto induce sulla produzione di coppie e- - e+. Nella prima parte ho calcolato la probabilità per unità di volume che una coppia e- - e+ venga creata dal vuoto in presenza di un campo magnetico intenso e lentamente variabile per mezzo della teoria delle perturbazioni adiabatiche al primo ordine. Inizialmente, ho mostrato analiticamente che se il campo magnetico cambia direzione allora vengono innescati meccanismi di produzione molto pi๠efficienti rispetto a quelli innescati in presenza di un campo magnetico variabile solo in modulo. Il motivo fisico di questo fatto va ricercato nell'esistenza di stati di singola particella elettronici e positronici la cui energia non dipende dal campo magnetico. Infatti, questi stati, detti transverse ground states (TGS), hanno, in presenza di un campo magnetico intenso, un'energia molto pi๠bassa di quella degli altri stati e solo se il campo magnetico varia in direzione ਠpossibile creare una coppia in cui sia l'elettrone che il positrone sono in un TGS. Un'altra conclusione di questa prima parte riguarda il ruolo che il campo elettrico indotto dalla variazione nel tempo del campo magnetico gioca nel fenomeno della produzione. Infatti, si vede che la creazione della coppia ਠpossibile (ovviamente) solo se tale campo elettrico ਠpresente e, in particolare, che la probabilità di creazione per unità di volume ਠproporzionale al quadrato del campo elettrico stesso. A vendo in mente una possibile applicazione dei calcoli agli spettri dei GRB, nella seconda parte della tesi ho calcolato lo spettro dei fotoni emessi da elettroni e positroni presenti in un campo magnetico intenso e puramente rotante in seguito alla loro annichilazione o come radiazione di sincrotrone. In entrambi i casi lo spettro finale ਠstato calcolato numericamente. Mentre lo spettro di annichilazione presenta un picco pronunciato in corrispondenza della massa dell'elettrone, lo spettro di sincrotrone mostra due andamenti differenti attorno ad un valore di energia rv 1-3 Me V. In generale, la forma dello spettro di sincrotrone somiglia qualitativamente a quella di alcuni spettri di G RB mentre lo spettro di annichilazione ਠdecisamente diverso. In particolare, ਠrisultato che analogamente agli spettri sperimentali l'andamento dello spettro di sincrotrone per piccole energie ਠinversamente proporzionale all'energia del fotone. Infine, ho anche calcolato analiticamente lo spettro dei fotoni emessi direttamente dal vuoto in seguito all'interazione non lineare del vuoto stesso col campo magnetico rotante ma i risultati mostrano che il nun1ero di fotoni cosଠprodotti ਠdecisamente inferiore a quello dei fotoni prodotti attraverso gli altri due meccanismi e la loro presenza puಠessere trascurata. Come ho detto all'inizio, i campi magnetici che considero sono prodotti da stelle di neutroni o da buchi neri. Per questo, puಠrisultare importante tenere in considerazione anche la presenza del campo gravitazionale prodotto dall'oggetto compatto. Ho fatto questo nell'ultima parte della tesi in cui ho visto come le energie e gli stati elettronici e positronici di singola particella e, di conseguenza, le probabilità di produzione di una coppia vengono modificate dalla presenza di un campo gravitazionale debole trattato perturbativamente o dalla presenza di uno intenso trattato non perturbativamente. Nel primo caso, il risultato pi๠interessante ਠche in presenza di un campo gravitazionale (seppur debole) perpendicolare al campo magnetico ਠpossibile creare coppie con l 'elettrone e il positrone in un TGS anche se il campo magnetico varia solo in modulo. Invece, il trattamento del caso non perturbativo ਠrisultato completamente diverso per il fatto che i livelli energetici dell'elettrone e del positrone, a differenza che nello spaziotempo di Minkowski, sono individuati da un numero quantico continuo e indipendente dagli altri numeri quantici e dal campo magnetico. In questo caso, ho mostrato come gli effetti del campo gravitazionale sulla probabilità di creazione sono effettivamente molto importanti, tanto da non poter essere trascurati. In particolare, elettroni e positroni con energie molto alte vengono creati in numero maggiore in presenza di un campo gravitazionale intenso che nello spaziotempo di Minkowski.
PARTICLE PRODUCTION IN A STRONG, SLOWLY-VARYING MAGNETIC FIELD WITH AN APPLICATION TO ASTROPHYSICS
-
2015
Abstract
In questo lavoro ho affrontato lo studio della produzione dal vuoto di particelle (elettroni, posi troni e fotoni) in presenza di campi magnetici intensi e lentamente variabili nel tempo. Per "campi magnetici intensi" intendo campi magnetici la cui intensità ਠmolto maggiore del valore Ber = m2c3 /(ne) = 4.4 x 1013 gauss che corrisponde al valore minimo dell'ampiezza che un campo magnetico deve avere affinchà© risulti energeticamente possibile la creazione dal vuoto di una coppia e- - e+. Tali campi magnetici non possono essere prodotti in laboratorio, tuttavia, come mostrano certe evidenze indirette e simulazioni numeriche, essi possono essere presenti attorno a certi oggetti astrofisici compatti (stelle di neutroni estremamente magnetizzate dette magnetar o buchi neri massicci). Per questo motivo, nel presente lavoro ho assunto che le sorgenti dei campi magnetici in gioco sono sempre oggetti astrofisici compatti del tipo appena descritto. In particolare, ho tentato di applicare i miei risultati ai cosiddetti Gamma-Ray Bursts (GRB) e ai loro spettri energetici. I G RB sono impulsi molto intensi di raggi gamma soft che sono rivelati in media una volta al giorno dai nostri satelliti e che, si pensa, sono originati proprio attorno a sorgenti astrofisiche come buchi neri massicci o, secondo alcuni modelli, magnetar. Il mio punto di vista ਠquello di un fisico teorico e non di un astrofisico e, pertanto, i modelli che utilizzo sono versioni molto semplificate della realtà . Tuttavia, alcuni degli spettri di fotoni che ho calcolato mostrano somiglianze qualitative con i corrispondenti spettri energetici sperimentali dei GRB. Da un punto di vista dei risultati, la tesi puಠessere divisa in tre parti distinte: la prima riguarda la produzione di coppie e- -e+ in presenza di un campo magnetico intenso e lentamente variabile in varie configurazioni, la seconda riguarda la produzione di fotoni in presenza di un campo magnetico intenso e lentamente rotante e, infine, la terza riguarda gli effetti che il campo gravitazionale dell'oggetto astrofisico compatto induce sulla produzione di coppie e- - e+. Nella prima parte ho calcolato la probabilità per unità di volume che una coppia e- - e+ venga creata dal vuoto in presenza di un campo magnetico intenso e lentamente variabile per mezzo della teoria delle perturbazioni adiabatiche al primo ordine. Inizialmente, ho mostrato analiticamente che se il campo magnetico cambia direzione allora vengono innescati meccanismi di produzione molto pi๠efficienti rispetto a quelli innescati in presenza di un campo magnetico variabile solo in modulo. Il motivo fisico di questo fatto va ricercato nell'esistenza di stati di singola particella elettronici e positronici la cui energia non dipende dal campo magnetico. Infatti, questi stati, detti transverse ground states (TGS), hanno, in presenza di un campo magnetico intenso, un'energia molto pi๠bassa di quella degli altri stati e solo se il campo magnetico varia in direzione ਠpossibile creare una coppia in cui sia l'elettrone che il positrone sono in un TGS. Un'altra conclusione di questa prima parte riguarda il ruolo che il campo elettrico indotto dalla variazione nel tempo del campo magnetico gioca nel fenomeno della produzione. Infatti, si vede che la creazione della coppia ਠpossibile (ovviamente) solo se tale campo elettrico ਠpresente e, in particolare, che la probabilità di creazione per unità di volume ਠproporzionale al quadrato del campo elettrico stesso. A vendo in mente una possibile applicazione dei calcoli agli spettri dei GRB, nella seconda parte della tesi ho calcolato lo spettro dei fotoni emessi da elettroni e positroni presenti in un campo magnetico intenso e puramente rotante in seguito alla loro annichilazione o come radiazione di sincrotrone. In entrambi i casi lo spettro finale ਠstato calcolato numericamente. Mentre lo spettro di annichilazione presenta un picco pronunciato in corrispondenza della massa dell'elettrone, lo spettro di sincrotrone mostra due andamenti differenti attorno ad un valore di energia rv 1-3 Me V. In generale, la forma dello spettro di sincrotrone somiglia qualitativamente a quella di alcuni spettri di G RB mentre lo spettro di annichilazione ਠdecisamente diverso. In particolare, ਠrisultato che analogamente agli spettri sperimentali l'andamento dello spettro di sincrotrone per piccole energie ਠinversamente proporzionale all'energia del fotone. Infine, ho anche calcolato analiticamente lo spettro dei fotoni emessi direttamente dal vuoto in seguito all'interazione non lineare del vuoto stesso col campo magnetico rotante ma i risultati mostrano che il nun1ero di fotoni cosଠprodotti ਠdecisamente inferiore a quello dei fotoni prodotti attraverso gli altri due meccanismi e la loro presenza puಠessere trascurata. Come ho detto all'inizio, i campi magnetici che considero sono prodotti da stelle di neutroni o da buchi neri. Per questo, puಠrisultare importante tenere in considerazione anche la presenza del campo gravitazionale prodotto dall'oggetto compatto. Ho fatto questo nell'ultima parte della tesi in cui ho visto come le energie e gli stati elettronici e positronici di singola particella e, di conseguenza, le probabilità di produzione di una coppia vengono modificate dalla presenza di un campo gravitazionale debole trattato perturbativamente o dalla presenza di uno intenso trattato non perturbativamente. Nel primo caso, il risultato pi๠interessante ਠche in presenza di un campo gravitazionale (seppur debole) perpendicolare al campo magnetico ਠpossibile creare coppie con l 'elettrone e il positrone in un TGS anche se il campo magnetico varia solo in modulo. Invece, il trattamento del caso non perturbativo ਠrisultato completamente diverso per il fatto che i livelli energetici dell'elettrone e del positrone, a differenza che nello spaziotempo di Minkowski, sono individuati da un numero quantico continuo e indipendente dagli altri numeri quantici e dal campo magnetico. In questo caso, ho mostrato come gli effetti del campo gravitazionale sulla probabilità di creazione sono effettivamente molto importanti, tanto da non poter essere trascurati. In particolare, elettroni e positroni con energie molto alte vengono creati in numero maggiore in presenza di un campo gravitazionale intenso che nello spaziotempo di Minkowski.I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/287255
URN:NBN:IT:UNITS-287255