In this Thesis we describe the theoretical-computational study performed on the behavior of isolated systems, far from thermodynamic equilibrium. Analyzing models well-known in literature we follow a path bringing to the classification of different behaviors in function of the interaction range of the systems' particles. In the case of systems with long-range interaction we studied the "Quasi-Stationary states" (QSSs) which emerge at short times when the system evolves with Hamiltonian dynamics. Their interest is in the fact that in many physical systems, such as self-gravitating systems, plasmas and systems characterized by wave-particle interaction, QSSs are the only experimentally accessible regime. QSS are defined as stable solutions of the Vlasov equation and, as their duration diverges with the system size, for large systems' size they can be seen as the true equilibria. They do not follow the Boltzmann statistics, and it does not exists a general theory which describes them. Anyway it is possible to give an approximate description using Lynden-Bell theory. One part of the thesis is devoted to shed light on the characteristics of the phase diagram of the "Hamiltonian mean field" model (HMF), during the QSS, calculated with the Lynden-Bell theory. The results of our work allowed to confirm numerically the presence of a phase re-entrance. In the Thesis is present also a detailed description on the system's caloric curves and on the metastability. Still in this context we show an analysis of the equivalence of the statistical ensembles, confirmed in almost the totality of the phase diagram (except for a small region), although the presence of negative specific heat in the microcanonical ensemble, which in Boltzmannian systems implies the non-equivalence of statistical ensembles. This result allowed us to arrive to a surprising conclusion: the presence of negative specific heat in the canonical ensemble. Still in the context of long-range interacting systems we analyze the linear stability of the non-homogeneous QSSs with respect to the Vlasov equation. Since the study of QSS find an application in the Free-electron laser (FEL) and other light sources, which are characterized by wave-particle interaction, we analyze, in the last chapter, the experimental perspectives of our work in this context. The other class of systems we studied are short-range interacting systems. Here the behavior of the components of the system is strongly influenced by the neighbors, and if one takes a system in a disordered state (a zero magnetization state for magnetic systems), which relaxes towards an ordered equilibrium state, one sees that the ordering process first develops locally and then extends to the whole system forming domains of opposed magnetization which grow in size. This process is called "coarsening". Our work in this field consisted in investigating numerically the laws of scale, and in the Thesis we characterize the temporal dependence of the domain sizes for different interaction ranges and we show a comparison between Hamiltonian and Langevin dynamics. This work inserts in the open debate on the equivalence of different dynamics where we found that, at least for times not too large, the two dynamics give different scaling laws.

Out-of-equilibrium behavior of many-body Hamiltonian systems with different interaction ranges

-
2011

Abstract

In this Thesis we describe the theoretical-computational study performed on the behavior of isolated systems, far from thermodynamic equilibrium. Analyzing models well-known in literature we follow a path bringing to the classification of different behaviors in function of the interaction range of the systems' particles. In the case of systems with long-range interaction we studied the "Quasi-Stationary states" (QSSs) which emerge at short times when the system evolves with Hamiltonian dynamics. Their interest is in the fact that in many physical systems, such as self-gravitating systems, plasmas and systems characterized by wave-particle interaction, QSSs are the only experimentally accessible regime. QSS are defined as stable solutions of the Vlasov equation and, as their duration diverges with the system size, for large systems' size they can be seen as the true equilibria. They do not follow the Boltzmann statistics, and it does not exists a general theory which describes them. Anyway it is possible to give an approximate description using Lynden-Bell theory. One part of the thesis is devoted to shed light on the characteristics of the phase diagram of the "Hamiltonian mean field" model (HMF), during the QSS, calculated with the Lynden-Bell theory. The results of our work allowed to confirm numerically the presence of a phase re-entrance. In the Thesis is present also a detailed description on the system's caloric curves and on the metastability. Still in this context we show an analysis of the equivalence of the statistical ensembles, confirmed in almost the totality of the phase diagram (except for a small region), although the presence of negative specific heat in the microcanonical ensemble, which in Boltzmannian systems implies the non-equivalence of statistical ensembles. This result allowed us to arrive to a surprising conclusion: the presence of negative specific heat in the canonical ensemble. Still in the context of long-range interacting systems we analyze the linear stability of the non-homogeneous QSSs with respect to the Vlasov equation. Since the study of QSS find an application in the Free-electron laser (FEL) and other light sources, which are characterized by wave-particle interaction, we analyze, in the last chapter, the experimental perspectives of our work in this context. The other class of systems we studied are short-range interacting systems. Here the behavior of the components of the system is strongly influenced by the neighbors, and if one takes a system in a disordered state (a zero magnetization state for magnetic systems), which relaxes towards an ordered equilibrium state, one sees that the ordering process first develops locally and then extends to the whole system forming domains of opposed magnetization which grow in size. This process is called "coarsening". Our work in this field consisted in investigating numerically the laws of scale, and in the Thesis we characterize the temporal dependence of the domain sizes for different interaction ranges and we show a comparison between Hamiltonian and Langevin dynamics. This work inserts in the open debate on the equivalence of different dynamics where we found that, at least for times not too large, the two dynamics give different scaling laws.
2011
en
Coarsening
free electron laser
long-range
long-range interacting systems
Lynden-Bell theory
Non equilibium
Non-linear dynamics
Out of equilibrium
Phase ordering
Scaling laws
SCUOLA DI DOTTORATO DI RICERCA IN FISICA
Statistical physics
Vlasov equation
Università degli Studi di Trieste
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/288792
Il codice NBN di questa tesi è URN:NBN:IT:UNITS-288792