Carbon/Carbon (C/C) composite materials are employed in many high-performance braking applications, such as aeronautical braking, in which light weight and thermal resistance represent crucial requirements. Because of the growing interest in this class of materials, a large amount of research works investigated their tribological response. A complex behavior, characterized by the existence of different frictional regimes in function of the main contact parameters (temperature, pressure, sliding velocity etc.), has been highlighted. Despite the amount of works focused on this topic, only few research groups investigated the relationship between the frictional response of C/C materials and the occurrence of unstable frictioninduced vibrations (FIV) of the mechanical system, pointing out a fundamental role played by the interface rheology on the frictional behaviors leading to the occurrence of dynamic contact instabilities. In this framework, this Ph.D. thesis investigates the role of the third body (i.e. the interface layer formed by wear and external particles) on the tribological and dynamic response of C/C frictional systems. To this purpose, a new experimental method for the evaluation of the third body rheological role is developed, adopting an indirect approach. The ultrasonic cleaning technique is applied to remove the third body layer from a contact pair, allowing to perform tests on the same material samples both in presence and in absence of the interface layer. The comparison between the measured behaviors evidences a predominant role of the third body in controlling the overall frictional response of the system, especially at high temperature conditions. The reintroduction in the contact of an external third body is also investigated, using the cleaned samples, obtained after real brake conditions and after removal of their natural third body, as substrates. The validation of this procedure opens the way to the test of artificially produced third body specimens. Complementary SEM observations have been performed to characterize the third body layer observed on the frictional surfaces of C/C materials conditioned during service life. Morphological families of the third body in agreement with the existent literature have been identified, and a particular focus has been placed on the heterogeneous contaminants observed in the carbonaceous third body. These observations have driven the development of the artificial third body specimens, intended to reproduce as better as possible the morphology of the natural third body, controlling the presence and the morphology of the heterogeneous contaminants. Using this methodology, the role of the third body and of its characteristics, such as morphology and chemical composition, on the frictional and dynamic response of C/C materials has been analyzed. The effect of selected third body contaminants is investigated, revealing a strong sensitivity of the C/C frictional response on the contaminant nature, even in presence of a low fraction of heterogeneous elements in the third body layer. Each type of contaminant is characterized in terms of its effect on the mean frictional values and on the friction-velocity relationship, aspects both fundamentals to evaluate their impact on the occurrence of unstable friction-induced vibrations. Rheological scenarios are then proposed to explain the measured tribological response, clarifying the frictional behaviors that lead to the occurrence of an unstable dynamic response of the system.
I materiali compositi carbonio/carbonio (C/C) sono impiegati in molte applicazioni frenanti ad alte prestazioni, come la frenatura aeronautica, in cui la leggerezza e la resistenza termica rappresentano requisiti cruciali. A causa del crescente interesse per questa classe di materiali, una grande quantità di lavori di ricerca ha studiato la loro risposta tribologica. È stato evidenziato un comportamento complesso, caratterizzato dall'esistenza di diversi regimi di attrito in funzione dei principali parametri di contatto (temperatura, pressione, velocità di strisciamento ecc.). Nonostante la mole di lavori focalizzati su questo argomento, solo pochi gruppi di ricerca hanno indagato la relazione tra la risposta in attrito dei materiali C/C e l'insorgenza di vibrazioni instabili del sistema meccanico indotte dall'attrito (FIV), evidenziando un ruolo fondamentale svolto dalla reologia dell'interfaccia sui comportamenti di attrito che portano all'insorgenza di instabilità dinamiche di contatto. In questo contesto, questa tesi di dottorato indaga il ruolo del terzo corpo (cioè lo strato di interfaccia formato dalle particelle di usura e provenienti dall’esterno) sulla risposta tribologica e dinamica dei sistemi di attrito C/C. A questo scopo, viene sviluppato un nuovo metodo sperimentale per la valutazione del ruolo reologico del terzo corpo, adottando un approccio indiretto. La tecnica di pulizia ad ultrasuoni viene applicata per rimuovere lo strato del terzo corpo da un contatto C/C, consentendo di eseguire test sugli stessi campioni di materiale sia in presenza che in assenza dello strato di interfaccia. Il confronto tra i comportamenti misurati evidenzia un ruolo predominante del terzo corpo nel controllo della risposta in attrito del sistema, soprattutto in condizioni di alta temperatura. Viene anche studiata la reintroduzione nel contatto di un terzo corpo esterno, utilizzando come substrati i campioni puliti, ottenuti dopo essere stati sottoposti a condizioni reali di frenata e dopo la rimozione del loro terzo corpo naturale. La validazione di questa procedura apre la strada alla sperimentazione di campioni di terzo corpo artificiale. Osservazioni SEM complementari sono state eseguite per caratterizzare lo strato di terzo corpo osservato sulle superfici di attrito dei materiali C/C condizionati durante la vita operativa in servizio. Sono state identificate famiglie morfologiche del terzo corpo in accordo con la letteratura esistente, e un particolare focus è stato posto sui contaminanti eterogenei osservati nel terzo corpo carbonioso. Queste osservazioni hanno guidato lo sviluppo dei provini di terzo corpo artificiale, destinati a riprodurre il più possibile la morfologia del terzo corpo naturale, controllando la presenza e la morfologia dei contaminanti eterogenei. Utilizzando questa metodologia, è stato analizzato il ruolo del terzo corpo e delle sue caratteristiche, come la morfologia e la composizione chimica, sulla risposta in attrito e dinamica del sistema. L'effetto di determinati contaminanti è stato studiato, rivelando una forte sensibilità della risposta in attrito dei materiali C/C rispetto alla natura del contaminante, anche in presenza di una bassa concentrazione di elementi eterogenei nello strato di terzo corpo. Ogni tipo di contaminante è caratterizzato in termini di effetto sui valori medi di attrito e sulla relazione attrito-velocità, aspetti entrambi fondamentali per valutare il loro impatto sul verificarsi di vibrazioni instabili indotte dall'attrito. Vengono quindi proposti scenari reologici per spiegare la risposta tribologica misurata, chiarendo i comportamenti di attrito che portano al verificarsi di una risposta dinamica instabile del sistema.
Role of interface rheology and physico-chemistry on the tribological and vibrational response of C/C frictional systems
CIPRARI, SIMONE
2025
Abstract
Carbon/Carbon (C/C) composite materials are employed in many high-performance braking applications, such as aeronautical braking, in which light weight and thermal resistance represent crucial requirements. Because of the growing interest in this class of materials, a large amount of research works investigated their tribological response. A complex behavior, characterized by the existence of different frictional regimes in function of the main contact parameters (temperature, pressure, sliding velocity etc.), has been highlighted. Despite the amount of works focused on this topic, only few research groups investigated the relationship between the frictional response of C/C materials and the occurrence of unstable frictioninduced vibrations (FIV) of the mechanical system, pointing out a fundamental role played by the interface rheology on the frictional behaviors leading to the occurrence of dynamic contact instabilities. In this framework, this Ph.D. thesis investigates the role of the third body (i.e. the interface layer formed by wear and external particles) on the tribological and dynamic response of C/C frictional systems. To this purpose, a new experimental method for the evaluation of the third body rheological role is developed, adopting an indirect approach. The ultrasonic cleaning technique is applied to remove the third body layer from a contact pair, allowing to perform tests on the same material samples both in presence and in absence of the interface layer. The comparison between the measured behaviors evidences a predominant role of the third body in controlling the overall frictional response of the system, especially at high temperature conditions. The reintroduction in the contact of an external third body is also investigated, using the cleaned samples, obtained after real brake conditions and after removal of their natural third body, as substrates. The validation of this procedure opens the way to the test of artificially produced third body specimens. Complementary SEM observations have been performed to characterize the third body layer observed on the frictional surfaces of C/C materials conditioned during service life. Morphological families of the third body in agreement with the existent literature have been identified, and a particular focus has been placed on the heterogeneous contaminants observed in the carbonaceous third body. These observations have driven the development of the artificial third body specimens, intended to reproduce as better as possible the morphology of the natural third body, controlling the presence and the morphology of the heterogeneous contaminants. Using this methodology, the role of the third body and of its characteristics, such as morphology and chemical composition, on the frictional and dynamic response of C/C materials has been analyzed. The effect of selected third body contaminants is investigated, revealing a strong sensitivity of the C/C frictional response on the contaminant nature, even in presence of a low fraction of heterogeneous elements in the third body layer. Each type of contaminant is characterized in terms of its effect on the mean frictional values and on the friction-velocity relationship, aspects both fundamentals to evaluate their impact on the occurrence of unstable friction-induced vibrations. Rheological scenarios are then proposed to explain the measured tribological response, clarifying the frictional behaviors that lead to the occurrence of an unstable dynamic response of the system.File | Dimensione | Formato | |
---|---|---|---|
Tesi_dottorato_Ciprari.pdf
accesso aperto
Dimensione
22.6 MB
Formato
Adobe PDF
|
22.6 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/295306
URN:NBN:IT:UNIROMA1-295306