Metal hydrides have become more and more significant both as hydrogen storage devices and as basic elements in energy conversion systems. Besides the well-known rare earth hydrides, magnesium alloys are very promising in the fields of hydrogen and thermal energy storage. Therefore, a numerical model to describe absorption and desorption processes of a metal hydride has been developed and calibrated for magnesium hydride in the present thesis; the calibration implied the estimate of the kinetic parameters for this hydride. Such values have been employed to study the behaviour of a general metal hydride-based energy system. The model has been specialised to analyse the integration of a MH (metal hydride) system with a fuel cell, performing a comparison between two lowtemperature hydrides (LaNi5 , LaNi4.8Al0.2) and two high-temperature hydrides (Mg, Mg2Ni). The final goal of the thesis has been the evaluation of MH systems intended as TES (thermal energy storage) devices for concentrating solar power plants, which are the most interesting application of hydrides. Four MH systems have been composed by combining the studied hydrides: the investigation has taken into account CSP overall performances, total heat transfer surfaces and TES efficiencies, with the aim of determining the feasibility of the designed plants.
Gli idruri metallici sono diventati sempre pi`u importanti sia come strumenti per lo stoccaggio di idrogeno che come elementi base di sistemi energetici. Al di l`a dei ben noti idruri di terre rare, le leghe di magnesio sono molto promettenti nel campo dello stoccaggio di idrogeno e di energia termica. Perci`o un modello numerico atto a descrivere le fasi di assorbimento e rilascio di un idruro `e stato in questa tesi sviluppato e validato per l’idruro di magnesio, del quale sono stati stimati i parametri cinetici principali. Questi valori sono stati utilizzati per studiare il comportamento di un generico sistema energetico a idruri. Lo studio `e stato poi specializzato per analizzare l’integrazione di un sistema a idruri con una cella a combustible, confrontando due idruri di bassa temperatura (LaNi5 , LaNi4.8Al0.2) con due di alta temperatura (Mg, Mg2Ni). L’obiettivo finale del lavoro `e stato lo studio di sistemi per lo storage termico basati sugli idruri precedentemente esaminati, accoppiati con impianti solari a concentrazione; questa `e infatti la loro pi`u interessante applicazione. L’analisi `e stata svolta prendendo in considerazione le prestazioni globali dell’impianto, le superfici di scambio e le efficienze di stoccaggio di calore, in modo da stabilire la fattibilit`a dei sistemi progettati.
Metal hydrides as hydrogen and heat storage devices in advanced energy systems
STILO, TOMMASO
2019
Abstract
Metal hydrides have become more and more significant both as hydrogen storage devices and as basic elements in energy conversion systems. Besides the well-known rare earth hydrides, magnesium alloys are very promising in the fields of hydrogen and thermal energy storage. Therefore, a numerical model to describe absorption and desorption processes of a metal hydride has been developed and calibrated for magnesium hydride in the present thesis; the calibration implied the estimate of the kinetic parameters for this hydride. Such values have been employed to study the behaviour of a general metal hydride-based energy system. The model has been specialised to analyse the integration of a MH (metal hydride) system with a fuel cell, performing a comparison between two lowtemperature hydrides (LaNi5 , LaNi4.8Al0.2) and two high-temperature hydrides (Mg, Mg2Ni). The final goal of the thesis has been the evaluation of MH systems intended as TES (thermal energy storage) devices for concentrating solar power plants, which are the most interesting application of hydrides. Four MH systems have been composed by combining the studied hydrides: the investigation has taken into account CSP overall performances, total heat transfer surfaces and TES efficiencies, with the aim of determining the feasibility of the designed plants.File | Dimensione | Formato | |
---|---|---|---|
STILO_TesiDottoratoDEF_COMPRESSA.pdf
accesso solo da BNCF e BNCR
Dimensione
2.47 MB
Formato
Adobe PDF
|
2.47 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/297473
URN:NBN:IT:UNIROMA2-297473