Background—Previous studies have investigated the role of intrinsic conduction in optimizing cardiac resynchronization therapy. We investigated the role of fusing pacing-induced activation and intrinsic conduction in cardiac resynchronization therapy by evaluating the acute hemodynamic effects of simultaneous His-bundle (HIS) and left ventricular (LV) pacing. Methods and Results—We studied 11 patients with systolic heart failure and left bundle-branch block scheduled for cardiac resynchronization therapy implantation. On implantation, LV pressure–volume data were determined via conductance catheter. Standard leads were placed in the right atrium, at the right ventricular apex, and in a coronary vein. An additional electrode was temporarily positioned in the HIS. The following pacing configurations were systematically assessed: standard biventricular (right ventricular apex+LV), LV-only, HIS, simultaneous HIS and LV (HIS+LV). Each configuration was compared with the AAI mode at multiple atrioventricular delays (AVD). In comparison with the AAI, right ventricular apex+LV and LV-only pacing resulted in improved stroke volume (85±32 mL and 86±33 mL versus 58±23 mL; P<0.001), stroke work, maximum pressure derivative, and systolic dyssynchrony at individually optimized AVD. The optimal AVD was close to the P-H interval in the majority of patients. By contrast, HIS-LV pacing improved hemodynamic indexes at all AVD (stroke volume >76 mL at all fixed intervals and 88±31 mL at optimal interval; all P<0.001). Conclusions—Standard right ventricular apex+LV and LV-only pacing enhanced systolic function and LV synchrony at individually optimized AVD close to the measured intrinsic P-H interval. By contrast, HIS+LV pacing yielded improvements, regardless of AVD setting. These findings support the hypothesis of the crucial role of intrinsic right ventricular conduction in optimal cardiac resynchronization therapy delivery

Stimolazione simultanea del fascio di His e del ventricolo sinistro per una ottimale terapia di resincronizzazione cardiaca: valutazione emodinamica con le curve pressione-volume in acuto

PADELETTI, MARGHERITA
2017

Abstract

Background—Previous studies have investigated the role of intrinsic conduction in optimizing cardiac resynchronization therapy. We investigated the role of fusing pacing-induced activation and intrinsic conduction in cardiac resynchronization therapy by evaluating the acute hemodynamic effects of simultaneous His-bundle (HIS) and left ventricular (LV) pacing. Methods and Results—We studied 11 patients with systolic heart failure and left bundle-branch block scheduled for cardiac resynchronization therapy implantation. On implantation, LV pressure–volume data were determined via conductance catheter. Standard leads were placed in the right atrium, at the right ventricular apex, and in a coronary vein. An additional electrode was temporarily positioned in the HIS. The following pacing configurations were systematically assessed: standard biventricular (right ventricular apex+LV), LV-only, HIS, simultaneous HIS and LV (HIS+LV). Each configuration was compared with the AAI mode at multiple atrioventricular delays (AVD). In comparison with the AAI, right ventricular apex+LV and LV-only pacing resulted in improved stroke volume (85±32 mL and 86±33 mL versus 58±23 mL; P<0.001), stroke work, maximum pressure derivative, and systolic dyssynchrony at individually optimized AVD. The optimal AVD was close to the P-H interval in the majority of patients. By contrast, HIS-LV pacing improved hemodynamic indexes at all AVD (stroke volume >76 mL at all fixed intervals and 88±31 mL at optimal interval; all P<0.001). Conclusions—Standard right ventricular apex+LV and LV-only pacing enhanced systolic function and LV synchrony at individually optimized AVD close to the measured intrinsic P-H interval. By contrast, HIS+LV pacing yielded improvements, regardless of AVD setting. These findings support the hypothesis of the crucial role of intrinsic right ventricular conduction in optimal cardiac resynchronization therapy delivery
2017
Italiano
Fascio di His, resincronizzazione cardiaca, scompenso cardiaco congestizio
POGGESI, CORRADO
Università degli Studi di Siena
22
File in questo prodotto:
File Dimensione Formato  
phd_unisi_053850.pdf

accesso aperto

Licenza: Tutti i diritti riservati
Dimensione 523.76 kB
Formato Adobe PDF
523.76 kB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/304755
Il codice NBN di questa tesi è URN:NBN:IT:UNISI-304755