Graphene is the first two-dimensional (2D) atomic crystal available to us. Since its discovery in 2004, graphene has captured the attention and the imagination of worldwide researchers thank to its supreme properties. Catalytic chemical vapour deposition (CCVD) is a widely employed method to synthesize large areas graphene on metal foil or to cover nanoparticles (NPs) with carbon coating. Exfoliation of graphite is largely used for the massive production of flakes of graphene. In such light, this thesis work has been focused to develop industrial scalable processes starting from research at lab scale on graphene formation. The first part of investigation has been addressed to fabrication of highquality graphene films on Ni foil using CVD at ambient pressure. Critical parameters including Ni thickness, cooling rate, and polycrystalline crystallographic orientation have been explored to understand the graphene formation mechanism and to obtain controlled carbon growth. We have studied the effect of operating conditions such as the synthesis time and feed composition, as well as the key role played by H2. The placement of graphene on arbitrary substrates is key for applications. A study of graphene transfer from metal foil on specific support was also realized. Subsequently, core-shell few layer-graphene-coated metal nanoparticles (GCMNP) were synthesized by CVD. Different synthesis operating conditions were investigated to achieve a good control over the coverage of GCMNPs and to understand the mechanism of GCMNP formation and carbon coverage. The reactor outlet gas was continuously monitored on-line during the catalyst activity. Several techniques were utilized to characterize the catalyst and the reaction products and to correlate their properties with the reactor operating conditions. Magnetic properties of the core-shell few layer graphene-coated magnetic nanoparticles were also studied. Parallel, few layer graphene oxide (GO) nanosheets were prepared by a very fast modified Hummers method and largely characterized. The tribological behaviour of GO in mineral oil was investigated under a wide spectrum of conditions. Finally, the preparation of graphene and multilayer graphene sheets by liquid phase graphite exfoliation in N-methylpyrrolidone (NMP) was carried out. A one step massive very pure thin flakes production with an high monolayer yield was obtained. [edited by Author]

From graphene synthesis to applications

Claudia, Cirillo
2014

Abstract

Graphene is the first two-dimensional (2D) atomic crystal available to us. Since its discovery in 2004, graphene has captured the attention and the imagination of worldwide researchers thank to its supreme properties. Catalytic chemical vapour deposition (CCVD) is a widely employed method to synthesize large areas graphene on metal foil or to cover nanoparticles (NPs) with carbon coating. Exfoliation of graphite is largely used for the massive production of flakes of graphene. In such light, this thesis work has been focused to develop industrial scalable processes starting from research at lab scale on graphene formation. The first part of investigation has been addressed to fabrication of highquality graphene films on Ni foil using CVD at ambient pressure. Critical parameters including Ni thickness, cooling rate, and polycrystalline crystallographic orientation have been explored to understand the graphene formation mechanism and to obtain controlled carbon growth. We have studied the effect of operating conditions such as the synthesis time and feed composition, as well as the key role played by H2. The placement of graphene on arbitrary substrates is key for applications. A study of graphene transfer from metal foil on specific support was also realized. Subsequently, core-shell few layer-graphene-coated metal nanoparticles (GCMNP) were synthesized by CVD. Different synthesis operating conditions were investigated to achieve a good control over the coverage of GCMNPs and to understand the mechanism of GCMNP formation and carbon coverage. The reactor outlet gas was continuously monitored on-line during the catalyst activity. Several techniques were utilized to characterize the catalyst and the reaction products and to correlate their properties with the reactor operating conditions. Magnetic properties of the core-shell few layer graphene-coated magnetic nanoparticles were also studied. Parallel, few layer graphene oxide (GO) nanosheets were prepared by a very fast modified Hummers method and largely characterized. The tribological behaviour of GO in mineral oil was investigated under a wide spectrum of conditions. Finally, the preparation of graphene and multilayer graphene sheets by liquid phase graphite exfoliation in N-methylpyrrolidone (NMP) was carried out. A one step massive very pure thin flakes production with an high monolayer yield was obtained. [edited by Author]
13-ott-2014
Inglese
Liquid phase exfoliation
Graphene
Chemical vapour deposition
Sarno, Maria
CIAMBELLI, Paolo
Università degli Studi di Salerno
File in questo prodotto:
File Dimensione Formato  
abstract in inglese C. Cirillo.pdf.pdf

accesso aperto

Licenza: Tutti i diritti riservati
Dimensione 28.01 kB
Formato Adobe PDF
28.01 kB Adobe PDF Visualizza/Apri
tesi C. Cirillo.pdf.pdf

accesso aperto

Licenza: Tutti i diritti riservati
Dimensione 11.38 MB
Formato Adobe PDF
11.38 MB Adobe PDF Visualizza/Apri
115340143448895198333105148063599093828.pdf

accesso solo da BNCF e BNCR

Licenza: Tutti i diritti riservati
Dimensione 28.01 kB
Formato Adobe PDF
28.01 kB Adobe PDF
144554417152968104702198788310532769380.pdf

accesso solo da BNCF e BNCR

Licenza: Tutti i diritti riservati
Dimensione 11.38 MB
Formato Adobe PDF
11.38 MB Adobe PDF

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/311475
Il codice NBN di questa tesi è URN:NBN:IT:UNISA-311475