The current reality is characterized by a solid technological and pervasive component. These elements are expressed through smart devices, which make the environments we live in pervasive and able to exchange information. An example is represented by Smart Cities, complex environments able to leverage large amounts of data from sensors based on the Internet of Things (IoT) paradigm. One of the current challenges is using this information to transform scenarios from complex to helpful for increasing human well-being. This objective can be achieved by acquiring Context-Awareness, analyzing information, and managing the environment through the Situation-Awareness paradigm. This Thesis aims to introduce a methodology with predictive capabilities and context adaptability for managing complex scenarios. The added value of the proposed approach is the introduction of the semantic value acquired from the Context and Situation Awareness through graph approaches, which, unlike many strategies used, leads to better integration of knowledge, obtaining higher system performance. In particular, a methodology for merging Ontologies, Context Dimension Trees, and probabilistic approaches based on Bayesian Networks will be presented to help experts and end-users handle events and provide suggestions for improving the liveability of smart complex scenarios. The proposed methodology has been validated and applied to several complex scenarios based on the IoT paradigm obtaining promising results. [edited by Author]

Machine Learning Techniques and Models for Situation Awareness of IoT based Complex Systems

Santaniello, Domenico
2022

Abstract

The current reality is characterized by a solid technological and pervasive component. These elements are expressed through smart devices, which make the environments we live in pervasive and able to exchange information. An example is represented by Smart Cities, complex environments able to leverage large amounts of data from sensors based on the Internet of Things (IoT) paradigm. One of the current challenges is using this information to transform scenarios from complex to helpful for increasing human well-being. This objective can be achieved by acquiring Context-Awareness, analyzing information, and managing the environment through the Situation-Awareness paradigm. This Thesis aims to introduce a methodology with predictive capabilities and context adaptability for managing complex scenarios. The added value of the proposed approach is the introduction of the semantic value acquired from the Context and Situation Awareness through graph approaches, which, unlike many strategies used, leads to better integration of knowledge, obtaining higher system performance. In particular, a methodology for merging Ontologies, Context Dimension Trees, and probabilistic approaches based on Bayesian Networks will be presented to help experts and end-users handle events and provide suggestions for improving the liveability of smart complex scenarios. The proposed methodology has been validated and applied to several complex scenarios based on the IoT paradigm obtaining promising results. [edited by Author]
15-lug-2022
Inglese
Context Awareness
Situation awareness
Internet of things
Donsì, Francesco
COLACE, Francesco
Università degli Studi di Salerno
File in questo prodotto:
File Dimensione Formato  
121686748185795420284764070859341603202.pdf

accesso aperto

Licenza: Tutti i diritti riservati
Dimensione 105.33 kB
Formato Adobe PDF
105.33 kB Adobe PDF Visualizza/Apri
35185688484582152517369046928583160435.pdf

accesso aperto

Licenza: Tutti i diritti riservati
Dimensione 3.02 MB
Formato Adobe PDF
3.02 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/311599
Il codice NBN di questa tesi è URN:NBN:IT:UNISA-311599