New layered carbon-based materials were prepared and exhaustively characterized exploiting different characterization techniques, such as thermogravimetry (TGA), differential thermal calorimetry (DSC), Fourier transform infrared (FTIR) and wide angle X-ray diffraction (WAXD). Pristine graphite (G) with high surface area and carbon black (CB) samples with different surface areas were selected as starting materials to prepare the corresponding oxidized samples, i.e. graphite oxide (GO) and carbon black oxide (oCB), with the Hummers’ method. Thanks to the strong hydrophilicity and to the lamellar structure of oxidized carbon-based materials, a rich intercalation chemistry is permitted. In fact, after treatments of GO and oCB by strong basis, ordered intercalation compounds have been obtained, not only if the starting material is crystalline like graphite oxide, but also if it is completely amorphous like oxidized carbon black. Starting basified GO, free-standing papers can be obtained by vacuum filtration, as well as by casting procedure, of colloidal dispersions of graphene oxide sheets. The use of basified GO leads to more flexible, solvent resistant and thermally stable GO papers. Spectroscopic analyses of the obtained papers have been conducted aiming to a possible rationalization of the observed behavior. [edited by Author]

Carbon-based nanomaterials

MAGGIO, MARIO
2017

Abstract

New layered carbon-based materials were prepared and exhaustively characterized exploiting different characterization techniques, such as thermogravimetry (TGA), differential thermal calorimetry (DSC), Fourier transform infrared (FTIR) and wide angle X-ray diffraction (WAXD). Pristine graphite (G) with high surface area and carbon black (CB) samples with different surface areas were selected as starting materials to prepare the corresponding oxidized samples, i.e. graphite oxide (GO) and carbon black oxide (oCB), with the Hummers’ method. Thanks to the strong hydrophilicity and to the lamellar structure of oxidized carbon-based materials, a rich intercalation chemistry is permitted. In fact, after treatments of GO and oCB by strong basis, ordered intercalation compounds have been obtained, not only if the starting material is crystalline like graphite oxide, but also if it is completely amorphous like oxidized carbon black. Starting basified GO, free-standing papers can be obtained by vacuum filtration, as well as by casting procedure, of colloidal dispersions of graphene oxide sheets. The use of basified GO leads to more flexible, solvent resistant and thermally stable GO papers. Spectroscopic analyses of the obtained papers have been conducted aiming to a possible rationalization of the observed behavior. [edited by Author]
27-feb-2017
Inglese
GUERRA, Gaetano
LONGO, Pasquale
Università degli Studi di Salerno
File in questo prodotto:
File Dimensione Formato  
110812731016281417522077559378285085773.pdf

accesso aperto

Licenza: Tutti i diritti riservati
Dimensione 118.77 kB
Formato Adobe PDF
118.77 kB Adobe PDF Visualizza/Apri
25903361679650392211339186845136974251.pdf

accesso aperto

Licenza: Tutti i diritti riservati
Dimensione 105.3 kB
Formato Adobe PDF
105.3 kB Adobe PDF Visualizza/Apri
27550602164894191178837575645556444655.pdf

accesso aperto

Licenza: Tutti i diritti riservati
Dimensione 5.77 MB
Formato Adobe PDF
5.77 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/312285
Il codice NBN di questa tesi è URN:NBN:IT:UNISA-312285