Platinum-based compounds remain among the cornerstones of anticancer chemotherapy; however,their clinical efficacy is often limited by severe systemic toxicity and the onset of drug resistance.These drawbacks highlight the urgent need to develop new classes of alternative metal-based drugs.In this context, ruthenium complexes have emerged as a promising family of candidates, asexemplified by BOLD-100 and TLD-1433, two compounds currently in advanced phases of clinicaltrials for the treatment of several malignancies. Among the most extensively studied rutheniumscaffolds, Ru(II) polypyridyl complexes offer extended π-surfaces and octahedral geometries thatpromote nucleic acid recognition and display the characteristic “light-switch” effect upon DNAbinding. Moreover, many Ru(II) complexes have shown remarkable selectivity toward noncanonicalDNA secondary structures known as G-quadruplexes (G4s).G4 structures are particularly abundant in telomeric regions and in genomic sites of regulatoryimportance, such as oncogene promoters (e.g., MYC, KIT, and BCL2). Since G4s can modulate theexpression of genes involved in tumorigenesis and affect the progression of DNA replication, theyrepresent highly attractive therapeutic targets. Small molecules capable of binding and stabilizing G4structures (G4 binders) can alter oncogene expression, induce replicative stress, and promoteapoptotic processes.Mitochondrial DNA (mtDNA) also contains guanine-rich regions capable of forming G4 structureswithin genes and regulatory sequences, suggesting an additional level of gene regulation at theorganellar level. This evidence opens new perspectives for the development of compounds able toselectively bind mitochondrial G4s, combining structural recognition with targeted interference ofmitochondrial bioenergetic processes, and thus offering new opportunities for precision therapeuticinterventions. At the same time, mitochondria themselves are of particular interest as anticancertargets due to their central roles in metabolism, apoptosis regulation, and mechanisms of drugresistance. Mitochondrial targeting can be achieved through the conjugation of triphenylphosphonium(TPP) groups, which exploit the negative mitochondrial membrane potential to promote the selectiveaccumulation of cationic molecules within the organelle.The goal of this PhD project is the synthesis of novel Ru(II) complexes specifically functionalizedfor mitochondrial targeting, designed to interact with G4 structures within mtDNA and to assess theirpotential anticancer activity. This work introduces the first ruthenium complexes specificallyengineered for the recognition of mitochondrial G4s. The compounds were characterized by nuclear magnetic resonance spectroscopy, mass spectrometry, and elemental analysis. Their interaction withmitochondrial G4 structures was investigated using various biophysical techniques, including UV-visible absorption spectroscopy, circular dichroism, fluorescence spectroscopy, and FörsterResonance Energy Transfer (FRET) melting assays.The biological activity of the Ru(II) complexes was investigated during an eight-month research stayat the Institute for Cancer Research, Medical University of Vienna (Austria). In this context, cellviability assays on 2D and 3D cultures were performed, both alone and in combination with metabolicmodulators (BAY -876 and metformin). Mitochondrial function was analyzed using the Seahorse XFAnalyzer, mitochondrial gene expression was evaluated by RT-qPCR, and cellular uptake wasquantified by ICP-MS.The present thesis is organized into three sections: (i) Introduction, (ii) Results, and (iii) Conclusions.The Results section is further divided into five chapters. The first two chapters explore two differentRu-based scaffolds, polypyridyl and arene “piano-stool” complexes, functionalized with TPP groups,focusing on their interaction with mitochondrial G4 sequences and their biological activity in cancercell lines. Chapter III investigates a new family of Ru(II) complexes containing oxadiazole ligands,with the aim of broadening the understanding of recognition mechanisms between Ru(II) complexesand G4 structures, in this case of nuclear origin. Their biological activity was also evaluated indifferent tumor cell lines. Finally, in the concluding part of the work (Chapters IV and V), the studyextends to additional Ru(II) complexes developed within international collaborative projects. Thesestudies contributed to advancing the overall understanding of G4 recognition by diverse Ru(II)scaffold.
I composti a base di platino restano tra i pilastri della chemioterapia antitumorale, ma la loro efficacia è spesso limitata da elevata tossicità sistemica e dall’insorgenza di fenomeni di farmacoresistenza. Tali limiti rendono urgente lo sviluppo di nuovi metallo-farmaci alternativi. In questo contesto, i complessi di rutenio rappresentano una promettente classe di candidati, come dimostrano due molecole, BOLD-100 e TLD-1433, attualmente in fasi avanzate di sperimentazione clinica per il trattamento di diverse neoplasie. Tra i complessi di rutenio più studiati, gli scaffold polipiridilici di Ru(II) offrono ampie superfici π e geometrie ottaedriche, che favoriscono il riconoscimento degli acidi nucleici e manifestano il caratteristico effetto “light-switch” in seguito al legame con il DNA. Inoltre, numerosi complessi di Ru(II) hanno mostrato una notevole selettività verso strutture secondarie del DNA non canoniche, note come G-Quadruplex (G4). Le strutture G4 sono particolarmente abbondanti nei telomeri e in regioni genomiche di rilevanza regolatoria, come i promotori di diversi oncogeni (ad esempio MYC, KIT e BCL2). Poiché i G4 sono in grado di modulare l’espressione di geni coinvolti nella tumorigenesi e di influenzare la progressione della replicazione cellulare, essi rappresentano bersagli terapeutici di grande interesse. Piccole molecole capaci di legarsi e stabilizzare le strutture G4 (G4 binders) possono alterare l’espressione di oncogeni, indurre stress replicativo e promuovere processi apoptotici. Anche il DNA mitocondriale (mtDNA) contiene tratti ricchi in guanine che possono formare strutture G4 all’interno di geni e regioni regolatorie, suggerendo un ulteriore livello di regolazione genica a livello dell’organello. Questa evidenza apre nuove prospettive per lo sviluppo di composti capaci di legare selettivamente i G4 mitocondriali, combinando il riconoscimento strutturale con un’interferenza mirata nei processi bioenergetici mitocondriali e delineando così nuove opportunità per strategie terapeutiche di tipo mirato. Parallelamente, i mitocondri rappresentano un bersaglio anticancro di particolare interesse, data la loro funzione cruciale nel metabolismo, nella regolazione dell’apoptosi e nei meccanismi di resistenza farmacologica. Il targeting mitocondriale può essere ottenuto attraverso la coniugazione di gruppi trifenilfosfonio (TPP), che sfruttano il potenziale di membrana negativo del mitocondrio per favorire l’accumulo selettivo di molecole cationiche al suo interno.L’obiettivo di questo progetto di dottorato è la sintesi di nuovi complessi di Ru(II), appositamentefunzionalizzati per il targeting mitocondriale, con lo scopo di interagire con le strutture G4 presentinel DNA mitocondriale e valutarne il potenziale effetto antitumorale. Questo progetto introduce i primi complessi di rutenio specificatamente modificati per il targeting dei G4 mitocondriali. I composti sono stati caratterizzati mediante spettroscopia di risonanza magnetica nucleare, spettrometria di massa e analisi elementare. Successivamente, l’interazione con strutture G4 mitocondriali è stata indagata attraverso diverse tecniche biofisiche, tra cui la spettroscopia di assorbimento UV-Visibile (UV-Vis), il dicroismo circolare (CD), la spettroscopia di fluorescenza e misure di melting mediante la tecnica Förster Resonance Energy Transfer (FRET). Lo studio dell’attività biologica dei complessi di Ru(II) è stato svolto durante un soggiorno di ricerca di otto mesi presso l’Institute for Cancer Research dell’Università di medicina di Vienna, in Austria. In tale contesto, sono stati eseguiti saggi di vitalità cellulare su colture 2D e 3D, anche in combinazione con modulatori metabolici (BAY -876 e metformina), analisi della funzionalità mitocondriale tramite Seahorse XF Analyzer, valutazioni dell’espressione genica mitocondriale mediante RT-qPCR e misure di uptake cellulare mediante ICP-MS.La presente tesi è articolata in tre sezioni: (i) Introduzione, (ii) Risultati e (iii) Conclusioni.La sezione dei Risultati è ulteriormente suddivisa in cinque capitoli. I primi due capitoli esplorano due diversi scaffold di complessi di rutenio, polipiridilici e arilici di tipo “piano-stool”, funzionalizzati con gruppi TPP, analizzandone le proprietà di interazione con sequenze G4 mitocondriali e l’attività biologica su linee cellulari tumorali. Nel Capitolo III, l’attenzione si concentra su una nuova famiglia di complessi di Ru(II) contenenti leganti ossadiazolici, con l’obiettivo di ampliare la comprensione dei meccanismi di riconoscimento tra complessi di rutenio e strutture G4, questa volta di origine nucleare. Anche in questo caso, l’attività biologica dei complessi è stata valutata su diverse linee cellulari tumorali. Infine, nella parte conclusiva del lavoro (Capitoli IV e V), l’indagine si estende a ulteriori complessi di Ru(II), sviluppati e studiati nell’ambito di progetti collaborativi internazionali. Questi studi hanno contribuito ad approfondire la comprensione del riconoscimento dei G4 da parte di diversi scaffold di Ru(II).
Ru(II) Metal Complexes: Synthesis, Interaction with Mitochondrial G-Quadruplex, and Biological Activity
MARRETTA, Laura
2025
Abstract
Platinum-based compounds remain among the cornerstones of anticancer chemotherapy; however,their clinical efficacy is often limited by severe systemic toxicity and the onset of drug resistance.These drawbacks highlight the urgent need to develop new classes of alternative metal-based drugs.In this context, ruthenium complexes have emerged as a promising family of candidates, asexemplified by BOLD-100 and TLD-1433, two compounds currently in advanced phases of clinicaltrials for the treatment of several malignancies. Among the most extensively studied rutheniumscaffolds, Ru(II) polypyridyl complexes offer extended π-surfaces and octahedral geometries thatpromote nucleic acid recognition and display the characteristic “light-switch” effect upon DNAbinding. Moreover, many Ru(II) complexes have shown remarkable selectivity toward noncanonicalDNA secondary structures known as G-quadruplexes (G4s).G4 structures are particularly abundant in telomeric regions and in genomic sites of regulatoryimportance, such as oncogene promoters (e.g., MYC, KIT, and BCL2). Since G4s can modulate theexpression of genes involved in tumorigenesis and affect the progression of DNA replication, theyrepresent highly attractive therapeutic targets. Small molecules capable of binding and stabilizing G4structures (G4 binders) can alter oncogene expression, induce replicative stress, and promoteapoptotic processes.Mitochondrial DNA (mtDNA) also contains guanine-rich regions capable of forming G4 structureswithin genes and regulatory sequences, suggesting an additional level of gene regulation at theorganellar level. This evidence opens new perspectives for the development of compounds able toselectively bind mitochondrial G4s, combining structural recognition with targeted interference ofmitochondrial bioenergetic processes, and thus offering new opportunities for precision therapeuticinterventions. At the same time, mitochondria themselves are of particular interest as anticancertargets due to their central roles in metabolism, apoptosis regulation, and mechanisms of drugresistance. Mitochondrial targeting can be achieved through the conjugation of triphenylphosphonium(TPP) groups, which exploit the negative mitochondrial membrane potential to promote the selectiveaccumulation of cationic molecules within the organelle.The goal of this PhD project is the synthesis of novel Ru(II) complexes specifically functionalizedfor mitochondrial targeting, designed to interact with G4 structures within mtDNA and to assess theirpotential anticancer activity. This work introduces the first ruthenium complexes specificallyengineered for the recognition of mitochondrial G4s. The compounds were characterized by nuclear magnetic resonance spectroscopy, mass spectrometry, and elemental analysis. Their interaction withmitochondrial G4 structures was investigated using various biophysical techniques, including UV-visible absorption spectroscopy, circular dichroism, fluorescence spectroscopy, and FörsterResonance Energy Transfer (FRET) melting assays.The biological activity of the Ru(II) complexes was investigated during an eight-month research stayat the Institute for Cancer Research, Medical University of Vienna (Austria). In this context, cellviability assays on 2D and 3D cultures were performed, both alone and in combination with metabolicmodulators (BAY -876 and metformin). Mitochondrial function was analyzed using the Seahorse XFAnalyzer, mitochondrial gene expression was evaluated by RT-qPCR, and cellular uptake wasquantified by ICP-MS.The present thesis is organized into three sections: (i) Introduction, (ii) Results, and (iii) Conclusions.The Results section is further divided into five chapters. The first two chapters explore two differentRu-based scaffolds, polypyridyl and arene “piano-stool” complexes, functionalized with TPP groups,focusing on their interaction with mitochondrial G4 sequences and their biological activity in cancercell lines. Chapter III investigates a new family of Ru(II) complexes containing oxadiazole ligands,with the aim of broadening the understanding of recognition mechanisms between Ru(II) complexesand G4 structures, in this case of nuclear origin. Their biological activity was also evaluated indifferent tumor cell lines. Finally, in the concluding part of the work (Chapters IV and V), the studyextends to additional Ru(II) complexes developed within international collaborative projects. Thesestudies contributed to advancing the overall understanding of G4 recognition by diverse Ru(II)scaffold.| File | Dimensione | Formato | |
|---|---|---|---|
|
Thesis_LM_DEF.pdf
accesso aperto
Licenza:
Tutti i diritti riservati
Dimensione
20.63 MB
Formato
Adobe PDF
|
20.63 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/344690
URN:NBN:IT:UNIPA-344690