Fabry disease (FD) is a genetic lysosomal storage disorder caused by a partial or complete deficiency of the enzyme α-galactosidase A (α-Gal A), encoded by the GLA gene on the X chromosome (Xq22). This enzymatic deficit leads to the accumulation of globotriaosylceramide (Gb3) and its metabolites in various cells, including those in the nervous system, resulting in neuropathic pain. This symptom typically begins in childhood, varies significantly among individuals and persists throughout life, impacting both physical and psychological well-being. Current pharmacological treatments for FD are largely ineffective in relieving pain, so patients often depend on analgesics such as NSAIDs, opioids, and antiepileptics; medications associated with substantial side effects over long-term use. Therefore, there is a strong need for new therapies that effectively alleviate pain with fewer adverse effects. Although the role of neuroinflammation in the genesis and maintenance of chronic neuropathic pain is now recognized, pain research in FD has so far paid little attention to this aspect. Indeed, even in this disease, pain may be attributable not only to neurons but may also involve non-neuronal cells such as glial and immune cells, as well as the inflammatory mediators they release. A newly identified chemokine family, the prokineticin system (PKS), is known to play a role in pain and neuroinflammation. This system includes the ligands PK1 and PK2 and their receptors PKR1 and PKR2, which are found in key areas of the nervous and immune systems involved in pain transmission. Studies, including those by our group, have shown that PKS is upregulated during inflammation and promotes peripheral nerve sensitization and pain maintenance. Antagonists of this system, such as a receptor antagonist PC1, have shown promise in reducing neuropathic pain by targeting both central and peripheral neuroinflammatory processes. This study aims to explore the role of non-neuronal cells in chronic pain associated with FD and to assess the therapeutic effects of PC1 (a PKS antagonist) and minocycline (a microglial inhibitor). We also aim to track how pain develops and persists over time and to investigate its possible connection with neuroinflammation and mood disorders like anxiety and depression. To carry out the study, we used a Gla knockout mouse model (Gla -/-), examining both early-stage (10 weeks old) and later-stage (25 weeks old) mice. We tested whether neuroinflammation and pain could be modulated through treatment with either minocycline or PC1. The presence of sensitivity alterations was checked by measuring specific sensory responses, like mechanical allodynia, thermal hyperalgesia, visceral pain and cold sensitivity. Mood alterations were assessed using specific behavioral tests for anxiety and depression. FD mice consistently showed mechanical allodynia and thermal hyperalgesia, with earlier but quickly resolved abdominal pain. Cold sensitivity increased with age. No significant mood disorders were observed at either stage of the disease. The animals were treated for 14 days with minocycline (10 mg/kg/day, intraperitoneally) or PC1 (150 µg/kg, twice daily, subcutaneously); pain, monitored periodically, was significantly less than that experienced by untreated FD mice of both ages. At the end of the two-week therapy, all animals were sacrificed for tissue analysis. We examined the sciatic nerve, dorsal root ganglia (DRG), spinal cord, prefrontal cortex, hippocampus and gut to assess (neuro)inflammation. RT-qPCR was used to evaluate expression of PK2, PKR1/2, inflammatory cytokines (IL-1β, IL-6, TNFα), glial markers (GFAP and Iba1) and, in DRG, epigenetic enzymes (KDM6A/B) and PPARγ, an anti-inflammatory mediator. Western blotting and immunohistochemistry assessed PK2, GFAP and Iba1 protein expression levels in the gut and central nervous system. Our biochemical analyses confirmed that behavioral symptoms corresponded with neuroinflammation, particularly in the DRG, where PKS, cytokines, GFAP and Iba1 were all upregulated. Central neuroinflammation, both in the spinal cord and in the brain regions, mild in young mice, became more pronounced with age. Intestinal inflammation was also observed, more prominently in younger animals. Both PC1 and minocycline reduced inflammation and neuroinflammation, with PC1 showing slightly greater effectiveness. In conclusion, this study demonstrates that chronic pain in Fabry disease is closely linked to a sustained neuroinflammatory state involving the prokineticin system, immune and glial cells. Pain worsens with age, coinciding with the spread of neuroinflammation into the central nervous system. Importantly, pharmacological inhibition of the PK system or glial cell activation significantly reduces inflammation and neuroinflammation, offering promising therapeutic avenues for managing FD-related neuropathic pain.
La malattia di Fabry (Fabry Disease, FD) è un disordine genetico da accumulo lisosomiale causato da una deficienza parziale o totale dell’enzima α-galattosidasi A (α-Gal A), codificato dal gene GLA localizzato sul cromosoma X (Xq22). Questo deficit enzimatico porta all’accumulo di globotriaosylceramide (Gb3) e dei suoi metaboliti in diverse tipologie cellulari, incluse quelle del sistema nervoso, con conseguente comparsa di dolore neuropatico. Questo sintomo insorge tipicamente nell’infanzia, varia significativamente tra individui e persiste per tutta la vita, influenzando il benessere sia fisico che psicologico. Le terapie farmacologiche attualmente disponibili per la malattia di Fabry risultano in gran parte inefficaci nel controllo del dolore, rendendo spesso necessario l’utilizzo di analgesici come FANS, oppiacei e antiepilettici, farmaci associati a rilevanti effetti collaterali nel lungo termine. Pertanto, esiste un forte bisogno di terapie innovative che allevino efficacemente il dolore con minori effetti avversi. Sebbene il ruolo della neuroinfiammazione nella genesi e nel mantenimento del dolore neuropatico cronico sia ormai riconosciuto, la ricerca sul dolore nella FD ha finora riservato scarsa attenzione a questo aspetto. Anche in questa malattia, infatti, il dolore potrebbe essere attribuibile non solo ai neuroni, ma coinvolgere anche cellule non neuronali come cellule gliali e immunitarie, nonché i mediatori infiammatori da esse rilasciati. Una famiglia di chemochine recentemente identificata, il sistema delle prochineticine (Prokineticin System, PKS), è nota per il suo coinvolgimento nel dolore e nella neuroinfiammazione. Questo sistema comprende i ligandi PK1 e PK2 e i relativi recettori PKR1 e PKR2, localizzati in aree chiave del sistema nervoso e immunitario implicate nella trasmissione del dolore. Studi, inclusi quelli condotti dal nostro gruppo, hanno dimostrato che il PKS è sovra-regolato durante processi infiammatori e favorisce la sensibilizzazione delle fibre nervose periferiche e il mantenimento del dolore. Antagonisti di questo sistema, come PC1, hanno mostrato promettenti effetti analgesici riducendo i processi neuroinfiammatori sia centrali che periferici. Questo studio mira a indagare il ruolo delle cellule non neuronali nel dolore cronico associato alla FD e a valutare gli effetti terapeutici di PC1 (un antagonista del PKS) e della minociclina (un inibitore della microglia). Ulteriori obiettivi includono il monitoraggio dello sviluppo e della persistenza del dolore nel tempo e l’analisi del possibile legame con la neuroinfiammazione e disturbi dell’umore, come ansia e depressione. Per la ricerca è stato utilizzato un modello murino Gla knockout (Gla -/-) con topi in uno stadio precoce (10 settimane) o avanzato (25 settimane) della malattia. L’obiettivo è stato la validazione del controllo della neuroinfiammazione e del dolore tramite minociclina o PC1 come possibili nuovi approcci terapeutici. Per valutare le alterazioni della sensibilità abbiamo indagato la presenza di allodinia meccanica, iperalgesia termica, dolore viscerale e sensibilità al freddo. Le alterazioni del tono dell’umore sono state invece esaminate tramite test comportamentali adeguati allo studio dell’ansia e della depressione. I topi con FD hanno mostrato persistente allodinia meccanica e iperalgesia termica; precoce, ma effimero dolore addominale e tardiva sensibilità al freddo. Non sono stati riscontrati disturbi dell’umore significativi in nessuna fase della malattia. Gli animali sono stati trattati per 14 giorni con minociclina (10 mg/kg/die, intraperitoneale) o PC1 (150 µg/kg, due volte al giorno, sottocute); il dolore, monitorato periodicamente, è risultato significativamente inferiore rispetto a quello sofferto dai topi FD non trattati di ambedue le età. A conclusione delle due settimane di terapia, tutti gli animali sono sacrificati per le analisi tissutali. Sono stati esaminati il nervo sciatico, i gangli della radice dorsale (DRG), il midollo spinale, la corteccia prefrontale, l’ippocampo e l’intestino per valutare i processi (neuro)infiammatori. L’RT-qPCR è stata impiegata per analizzare l’espressione di PK2, PKR1/2, citochine infiammatorie (IL-1β, IL-6, TNFα), marker gliali (GFAP e Iba1) e, nei DRG, enzimi epigenetici (KDM6A/B) e PPARγ, un mediatore antinfiammatorio. IWestern Blot e l’immunoistochimica sono stati eseguiti per valutare l’espressione proteica di PK2, GFAP e Iba1 nell’intestino e nel sistema nervoso centrale. Le analisi biochimiche hanno confermato che i sintomi comportamentali sono associati a neuroinfiammazione periferica, in particolare nei DRG, dove PKS, citochine, GFAP e Iba1 risultano sovra-regolati. La neuroinfiammazione centrale, tanto nel midollo spinale quanto nelle aree cerebrali, lieve nei topi giovani, aumenta con l’età. L’infiammazione intestinale, invece, risulta più marcata negli animali in fase precoce di malattia. Entrambi i trattamenti hanno significativamente ridotto anche l’infiammazione e la neuroinfiammazione, con un’efficacia leggermente maggiore osservata per PC1. In conclusione, i risultati di questo studio dimostrano che la malattia di Fabry è caratterizzata da uno stato di neuroinfiammazione cronica, mediato dall’attivazione del sistema delle prochineticine e delle cellule gliali ed immunitarie, che gioca un ruolo centrale nella persistenza del dolore neuropatico. L’intensità del dolore tende ad aumentare con l’età, accompagnata da una progressiva diffusione della neuroinfiammazione al sistema nervoso centrale. Le evidenze emerse indicano chiaramente che l’inibizione farmacologica del sistema PK o la soppressione dell’attività gliale rappresentano strategie terapeutiche promettenti per il trattamento del dolore nella malattia di Fabry, agendo direttamente sui meccanismi neuroinfiammatori alla base della cronicizzazione della sintomatologia dolorosa.
TARGETING NEUROINFLAMMATION TO RELIEVE FABRY DISEASE NEUROPATHIC PAIN:EFFICACY OF PROKINETICIN SYSTEM ANTAGONISM AND MICROGLIAL INHIBITION
GALIMBERTI, GIULIA
2025
Abstract
Fabry disease (FD) is a genetic lysosomal storage disorder caused by a partial or complete deficiency of the enzyme α-galactosidase A (α-Gal A), encoded by the GLA gene on the X chromosome (Xq22). This enzymatic deficit leads to the accumulation of globotriaosylceramide (Gb3) and its metabolites in various cells, including those in the nervous system, resulting in neuropathic pain. This symptom typically begins in childhood, varies significantly among individuals and persists throughout life, impacting both physical and psychological well-being. Current pharmacological treatments for FD are largely ineffective in relieving pain, so patients often depend on analgesics such as NSAIDs, opioids, and antiepileptics; medications associated with substantial side effects over long-term use. Therefore, there is a strong need for new therapies that effectively alleviate pain with fewer adverse effects. Although the role of neuroinflammation in the genesis and maintenance of chronic neuropathic pain is now recognized, pain research in FD has so far paid little attention to this aspect. Indeed, even in this disease, pain may be attributable not only to neurons but may also involve non-neuronal cells such as glial and immune cells, as well as the inflammatory mediators they release. A newly identified chemokine family, the prokineticin system (PKS), is known to play a role in pain and neuroinflammation. This system includes the ligands PK1 and PK2 and their receptors PKR1 and PKR2, which are found in key areas of the nervous and immune systems involved in pain transmission. Studies, including those by our group, have shown that PKS is upregulated during inflammation and promotes peripheral nerve sensitization and pain maintenance. Antagonists of this system, such as a receptor antagonist PC1, have shown promise in reducing neuropathic pain by targeting both central and peripheral neuroinflammatory processes. This study aims to explore the role of non-neuronal cells in chronic pain associated with FD and to assess the therapeutic effects of PC1 (a PKS antagonist) and minocycline (a microglial inhibitor). We also aim to track how pain develops and persists over time and to investigate its possible connection with neuroinflammation and mood disorders like anxiety and depression. To carry out the study, we used a Gla knockout mouse model (Gla -/-), examining both early-stage (10 weeks old) and later-stage (25 weeks old) mice. We tested whether neuroinflammation and pain could be modulated through treatment with either minocycline or PC1. The presence of sensitivity alterations was checked by measuring specific sensory responses, like mechanical allodynia, thermal hyperalgesia, visceral pain and cold sensitivity. Mood alterations were assessed using specific behavioral tests for anxiety and depression. FD mice consistently showed mechanical allodynia and thermal hyperalgesia, with earlier but quickly resolved abdominal pain. Cold sensitivity increased with age. No significant mood disorders were observed at either stage of the disease. The animals were treated for 14 days with minocycline (10 mg/kg/day, intraperitoneally) or PC1 (150 µg/kg, twice daily, subcutaneously); pain, monitored periodically, was significantly less than that experienced by untreated FD mice of both ages. At the end of the two-week therapy, all animals were sacrificed for tissue analysis. We examined the sciatic nerve, dorsal root ganglia (DRG), spinal cord, prefrontal cortex, hippocampus and gut to assess (neuro)inflammation. RT-qPCR was used to evaluate expression of PK2, PKR1/2, inflammatory cytokines (IL-1β, IL-6, TNFα), glial markers (GFAP and Iba1) and, in DRG, epigenetic enzymes (KDM6A/B) and PPARγ, an anti-inflammatory mediator. Western blotting and immunohistochemistry assessed PK2, GFAP and Iba1 protein expression levels in the gut and central nervous system. Our biochemical analyses confirmed that behavioral symptoms corresponded with neuroinflammation, particularly in the DRG, where PKS, cytokines, GFAP and Iba1 were all upregulated. Central neuroinflammation, both in the spinal cord and in the brain regions, mild in young mice, became more pronounced with age. Intestinal inflammation was also observed, more prominently in younger animals. Both PC1 and minocycline reduced inflammation and neuroinflammation, with PC1 showing slightly greater effectiveness. In conclusion, this study demonstrates that chronic pain in Fabry disease is closely linked to a sustained neuroinflammatory state involving the prokineticin system, immune and glial cells. Pain worsens with age, coinciding with the spread of neuroinflammation into the central nervous system. Importantly, pharmacological inhibition of the PK system or glial cell activation significantly reduces inflammation and neuroinflammation, offering promising therapeutic avenues for managing FD-related neuropathic pain.| File | Dimensione | Formato | |
|---|---|---|---|
|
phd_unimi_R13731.pdf
embargo fino al 26/11/2026
Licenza:
Tutti i diritti riservati
Dimensione
24.22 MB
Formato
Adobe PDF
|
24.22 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/353062
URN:NBN:IT:UNIMI-353062