This thesis investigates the role of measurements in open quantum systems, showing how they can be engineered not only to mitigate decoherence, but also to actively enhance non-equilibrium phases and energy extraction protocols. The first part builds the theoretical foundation, covering quantum dynamical maps, Lindblad master equations, and the thermodynamics of work, heat, and ergotropy in dissipative settings. After establishing this framework, the work focuses on two original contributions. In the first part, we investigate discrete time crystals (DTCs) subjected to thermal dissipation. By analyzing work, heat, and entropy flows during the dissipative evolution, we show that dissipation inevitably destroys time ordering. However, a key result of our work is that measurement schemes can be used not only to probe but also to stabilize time-crystalline dynamics, extending the lifetime of subharmonic oscillations even in dissipative regimes. In the second part, we study quantum batteries in the presence of continuous measurements, focusing on correlated battery–charger scenarios. By employing stochastic unravelings of the Lindblad master equation, we demonstrate that measurement backaction can systematically enhance the extractable work (daemonic ergotropy) in a broad and general class of systems and charging protocols, making the effect robust beyond specific models. Overall, this thesis shows that carefully engineered measurements can be harnessed to preserve and enhance quantum effects that are crucial for the development of realistic open quantum technologies operating under decoherence and dissipative settings.
Questa tesi indaga il ruolo delle misure in sistemi quantistici aperti, mostrando come esse possano essere ingegnerizzate non solo per mitigare la decoerenza, ma anche per rafforzare attivamente fasi fuori dall’equilibrio e protocolli di estrazione di energia. La prima parte costruisce le basi teoriche, trattando le mappe dinamiche quantistiche, la master equation di Lindblad e la termodinamica di lavoro, calore ed ergotropia in presenza di dissipazione. Dopo aver stabilito questo quadro, il lavoro si concentra su due contributi originali. Nella prima parte, studiamo cristalli temporali discreti (DTC) soggetti a dissipazione termica. Analizzando i flussi di lavoro, calore ed entropia durante l’evoluzione dissipativa, mostriamo che la dissipazione distrugge inevitabilmente l’ordine temporale. Tuttavia, un risultato chiave del nostro studio è che schemi di misura possono essere utilizzati non solo per sondare, ma anche per stabilizzare la dinamica tempo-cristallina, estendendo la durata delle oscillazioni subarmoniche anche in regime dissipativo. Nella seconda parte, analizziamo batterie quantistiche in presenza di misure continue, concentrandoci su scenari in cui batteria e caricatore sono correlati. Attraverso l’uso di unraveling stocastici della master equation di Lindblad, dimostriamo che la back-action della misura può aumentare sistematicamente il lavoro estraibile (ergotropia “demoniaca”) in una vasta e generale classe di sistemi e protocolli di caricamento, rendendo l’effetto robusto oltre specifici modelli. Nel complesso, questa tesi mostra che misure opportunamente ingegnerizzate possono essere sfruttate per preservare e potenziare effetti quantistici cruciali per lo sviluppo di tecnologie quantistiche realistiche operanti in presenza di decoerenza e dissipazione.
Misure nei sistemi quantistici aperti a molti corpi: cristalli temporali discreti e batterie quantistiche
CENEDESE, GABRIELE
2026
Abstract
This thesis investigates the role of measurements in open quantum systems, showing how they can be engineered not only to mitigate decoherence, but also to actively enhance non-equilibrium phases and energy extraction protocols. The first part builds the theoretical foundation, covering quantum dynamical maps, Lindblad master equations, and the thermodynamics of work, heat, and ergotropy in dissipative settings. After establishing this framework, the work focuses on two original contributions. In the first part, we investigate discrete time crystals (DTCs) subjected to thermal dissipation. By analyzing work, heat, and entropy flows during the dissipative evolution, we show that dissipation inevitably destroys time ordering. However, a key result of our work is that measurement schemes can be used not only to probe but also to stabilize time-crystalline dynamics, extending the lifetime of subharmonic oscillations even in dissipative regimes. In the second part, we study quantum batteries in the presence of continuous measurements, focusing on correlated battery–charger scenarios. By employing stochastic unravelings of the Lindblad master equation, we demonstrate that measurement backaction can systematically enhance the extractable work (daemonic ergotropy) in a broad and general class of systems and charging protocols, making the effect robust beyond specific models. Overall, this thesis shows that carefully engineered measurements can be harnessed to preserve and enhance quantum effects that are crucial for the development of realistic open quantum technologies operating under decoherence and dissipative settings.| File | Dimensione | Formato | |
|---|---|---|---|
|
PhD thesis-Cenedese-Submitted.pdf
accesso aperto
Licenza:
Tutti i diritti riservati
Dimensione
3.21 MB
Formato
Adobe PDF
|
3.21 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/353730
URN:NBN:IT:UNINSUBRIA-353730