Cyclic monophosphate nucleotides are increasingly recognized as signaling molecules involved in various physiological processes in plants. Among them is cyclic adenosine monophosphate (cAMP), which comes in two isomers: 3',5'-cAMP and 2',3'-cAMP. The former is synthesized by adenylate cyclases (AC), while the latter results from RNA degradation. Using proteomic and electrophysiological approaches in Arabidopsis thaliana, we observed that each isomer exerts distinct effects on the proteome. Specifically, 2',3'-cAMP regulates transcription systemically. Neither isomer alters ion fluxes under control conditions, but both reduce K⁺ efflux and Ca²⁺ influx under oxidative stress. CNGC2 and CNGC18 channels interact exclusively with 3',5'-cAMP, indicating isomer-specific gating. Additionally, 3',5'-cAMP is involved in the plant heat stress response (HSR), regulating protective cellular networks. Due to climate change, the frequency and intensity of heatwaves have increased, negatively affecting plant growth and yield. This thesis investigates the role of intracellular 3',5'-cAMP in HSR in Arabidopsis, using transgenic lines (cAS1 and cAS3) that express a “cAMP sponge” construct capable of selectively sequestering 3',5'-cAMP. Physiological, biochemical, and transcriptomic analyses clarify the contribution of this isomer to plant heat stress resilience.
I nucleotidi ciclici monofosfato sono sempre più riconosciuti come molecole segnale coinvolte in numerosi processi fisiologici nelle piante. Tra questi si trova l’adenosina ciclica monofosfato (cAMP), presente in due isomeri: 3',5'-cAMP e 2',3'-cAMP. Il primo è prodotto dalle adenilato ciclasi (AC), mentre il secondo deriva dalla degradazione dell'RNA. Mediante approcci proteomici ed elettrofisiologici in Arabidopsis thaliana, abbiamo osservato che ciascun isomero influisce in modo distinto sul proteoma. In particolare, il 2',3'-cAMP regola la trascrizione a livello sistemico. Nessuno dei due isomeri altera i flussi ionici in condizioni normali, ma entrambi attenuano la perdita di K⁺ e l’ingresso di Ca²⁺ sotto stress ossidativo. I canali CNGC2 e CNGC18 interagiscono esclusivamente con il 3',5'-cAMP, suggerendo un gating isomero-specifico. Il 3',5'-cAMP è inoltre coinvolto nella risposta delle piante allo stress da calore (HS), regolando reti protettive cellulari. Il cambiamento climatico ha aumentato frequenza e intensità delle ondate di calore, con impatti negativi sulla crescita e sulla resa. Questa tesi indaga il ruolo del 3',5'-cAMP nella HSR in Arabidopsis, usando linee transgeniche (cAS1 e cAS3) che esprimono una “cAMP sponge” capace di sequestrarlo selettivamente. Analisi fisiologiche, biochimiche e trascrittomiche chiariscono il contributo di questo isomero alla resilienza termica.
la risposta cAMP-dipendente delle piante sottoposte a stress
DAVIDE, ELEONORA
2025
Abstract
Cyclic monophosphate nucleotides are increasingly recognized as signaling molecules involved in various physiological processes in plants. Among them is cyclic adenosine monophosphate (cAMP), which comes in two isomers: 3',5'-cAMP and 2',3'-cAMP. The former is synthesized by adenylate cyclases (AC), while the latter results from RNA degradation. Using proteomic and electrophysiological approaches in Arabidopsis thaliana, we observed that each isomer exerts distinct effects on the proteome. Specifically, 2',3'-cAMP regulates transcription systemically. Neither isomer alters ion fluxes under control conditions, but both reduce K⁺ efflux and Ca²⁺ influx under oxidative stress. CNGC2 and CNGC18 channels interact exclusively with 3',5'-cAMP, indicating isomer-specific gating. Additionally, 3',5'-cAMP is involved in the plant heat stress response (HSR), regulating protective cellular networks. Due to climate change, the frequency and intensity of heatwaves have increased, negatively affecting plant growth and yield. This thesis investigates the role of intracellular 3',5'-cAMP in HSR in Arabidopsis, using transgenic lines (cAS1 and cAS3) that express a “cAMP sponge” construct capable of selectively sequestering 3',5'-cAMP. Physiological, biochemical, and transcriptomic analyses clarify the contribution of this isomer to plant heat stress resilience.| File | Dimensione | Formato | |
|---|---|---|---|
|
DAVIDE_THESIS.pdf
accesso aperto
Licenza:
Tutti i diritti riservati
Dimensione
4.98 MB
Formato
Adobe PDF
|
4.98 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/354094
URN:NBN:IT:UNINSUBRIA-354094