This PhD thesis focuses on the design, fabrication and analytical evaluation of molecularly imprinted polymer (MIP)-based sensing platforms, with the goal of developing highly selective and sensitive sensors for the detection of analytes at ultra-low concentrations. Molecular imprinting offers a powerful and versatile approach to create synthetic receptors with biomimetic recognition capabilities, combining the selectivity of natural receptors with the chemical and physical robustness of synthetic polymers. Within this framework, the research presented herein explores different strategies aimed at enhancing the overall performance of MIP-based sensors. The first part of the thesis provides an in-depth theoretical background on sensors and molecular imprinting polymers. The second part assembles the research results, which are illustrated through four scientific publications, each describing a specific strategy developed to improve the sensitivity and the overall performance of MIP based sensors. Paper I presents the development of fluorescent MIP nanoparticles for the ultra low detection of protein contaminants, using human serum albumin as a proof-of concept. The work introduces a strategy based on the controlled incorporation of fluorophores into the polymer matrix to maximize signal responsiveness. By fine tuning the fluorophore-to-template ratio during polymerization, the study achieves enhanced sensitivity and demonstrates the successful integration of MIP-based recognition elements with time-resolved fluorescence spectroscopy as an effective optical transduction approach. Paper II investigates how the structural homogeneity of imprinted binding sites influences the analytical performance of electrochemical MIP-based sensors. Two architectures were compared: an electropolymerized imprinted polyaniline layer, representing an inhomogeneous distribution of recognition sites, and a polyaniline layer doped with pre-synthesized uniform MIP nanoparticles. Using 17β-estradiol as analyte, the study demonstrates that the configuration with homogeneous MIP nanoparticles provides enhanced sensitivity and lower detection limits, confirming that structural uniformity is a key factor in achieving high-performance electrochemical sensing. Paper III reports the development of green MIP nanoparticles as biocompatible and sustainable synthetic receptors for the detection of cardiac troponin I, a key biomarker of myocardial infarction. The study introduces a design strategy based on renewable castor oil–derived monomers as eco-friendly functional components in MIP synthesis. The resulting MIP nanoparticles exhibit excellent stability and high recognition performance, demonstrating that environmentally sustainable materials can effectively replace conventional monomers in advanced MIP-based sensors. Paper IV presents the development of a high-sensitivity optical sensor for cardiac troponin I detection, integrating castor oil-derived green MIP nanoparticles into a miniaturized plastic optical fiber surface plasmon resonance transducer. The study evaluates the feasibility of employing these sustainable nanoreceptors in a plasmonic configuration to achieve ultrasensitive and selective detection suitable for point-of-care diagnostics.
Questa tesi di dottorato è incentrata sulla progettazione, fabbricazione e valutazione analitica di piattaforme sensoriali basate su polimeri a stampo molecolare (Molecularly Imprinted Polymers), con l’obiettivo di sviluppare sensori altamente selettivi e sensibili per la rilevazione di analiti a concentrazioni ultrabasse. La tecnica dell’imprinting molecolare rappresenta un approccio potente e versatile per la realizzazione di recettori sintetici dotati di capacità di riconoscimento biomimetico, combinando la selettività tipica dei recettori naturali con la robustezza chimica e fisica dei polimeri sintetici. In questo contesto, il lavoro di ricerca qui presentato esplora diverse strategie volte a migliorare le prestazioni complessive dei sensori basati su MIPs. La prima parte della tesi fornisce un approfondito inquadramento teorico sui sensori e sui polimeri a stampo molecolare. La seconda parte raccoglie i risultati sperimentali, illustrati attraverso quattro lavori scientifici, ciascuno dei quali descrive una specifica strategia sviluppata per incrementare la sensibilità e le prestazioni complessive dei sensori basati sui MIPs. Il Paper I descrive lo sviluppo di nanoparticelle MIP fluorescenti per la rivelazione di contaminanti proteici, utilizzando l’albumina sierica umana come proof-of concept. Il lavoro introduce una strategia basata sull’incorporazione controllata di fluorofori nella matrice polimerica, dimostrando che l’ottimizzazione del rapporto fluoroforo–templato durante la polimerizzazione incrementa la sensibilità del sensore e consente l’efficace integrazione degli MIP come elementi di riconoscimento in un approccio di trasduzione ottica basato sulla spettroscopia di fluorescenza risolta nel tempo. Il Paper II analizza l’influenza dell’omogeneità dei siti di riconoscimento dei MIP sulle prestazioni analitiche di sensori elettrochimici. Sono state confrontate due architetture: uno strato elettropolimerizzato di polianilina imprintato, caratterizzato da una distribuzione non omogenea dei siti di riconoscimento, e uno strato di polianilina in cui sono state incorporate nanoparticelle MIP pre-sintetizzate e omogenee. Utilizzando il 17β-estradiolo come analita modello, lo studio dimostra che la configurazione contenente nanoparticelle MIP uniformi offre maggiore sensibilità e limiti di rilevazione più bassi. Il Paper III presenta lo sviluppo di nanoparticelle MIP “green” come recettori sintetici biocompatibili e sostenibili per la rilevazione della troponina cardiaca I, un biomarcatore chiave dell’infarto miocardico. Il lavoro propone una strategia di sintesi dei MIP basata sull’utilizzo di un componente derivato da olio di ricino, impiegato come monomero funzionale che consente di ottenere nanoparticelle stabili e dotate di elevate prestazioni di riconoscimento. Il Paper IV descrive lo sviluppo di un sensore ottico ad alta sensibilità per la rilevazione della troponina cardiaca I, ottenuto integrando le nanoparticelle MIP “green” derivate da olio di ricino con un trasduttore plasmonico miniaturizzato basato su fibra ottica in plastica. Lo studio valuta la possibilità di impiegare questi nanorecettori sostenibili in configurazioni plasmoniche, ottenendo rilevazioni ultra sensibili e selettive adatte ad applicazioni diagnostiche point-of-care.
Tailored molecularly imprinted polymers nanoparticles as recognition elements for high-performance sensing platforms
MARINANGELI, ALICE
2026
Abstract
This PhD thesis focuses on the design, fabrication and analytical evaluation of molecularly imprinted polymer (MIP)-based sensing platforms, with the goal of developing highly selective and sensitive sensors for the detection of analytes at ultra-low concentrations. Molecular imprinting offers a powerful and versatile approach to create synthetic receptors with biomimetic recognition capabilities, combining the selectivity of natural receptors with the chemical and physical robustness of synthetic polymers. Within this framework, the research presented herein explores different strategies aimed at enhancing the overall performance of MIP-based sensors. The first part of the thesis provides an in-depth theoretical background on sensors and molecular imprinting polymers. The second part assembles the research results, which are illustrated through four scientific publications, each describing a specific strategy developed to improve the sensitivity and the overall performance of MIP based sensors. Paper I presents the development of fluorescent MIP nanoparticles for the ultra low detection of protein contaminants, using human serum albumin as a proof-of concept. The work introduces a strategy based on the controlled incorporation of fluorophores into the polymer matrix to maximize signal responsiveness. By fine tuning the fluorophore-to-template ratio during polymerization, the study achieves enhanced sensitivity and demonstrates the successful integration of MIP-based recognition elements with time-resolved fluorescence spectroscopy as an effective optical transduction approach. Paper II investigates how the structural homogeneity of imprinted binding sites influences the analytical performance of electrochemical MIP-based sensors. Two architectures were compared: an electropolymerized imprinted polyaniline layer, representing an inhomogeneous distribution of recognition sites, and a polyaniline layer doped with pre-synthesized uniform MIP nanoparticles. Using 17β-estradiol as analyte, the study demonstrates that the configuration with homogeneous MIP nanoparticles provides enhanced sensitivity and lower detection limits, confirming that structural uniformity is a key factor in achieving high-performance electrochemical sensing. Paper III reports the development of green MIP nanoparticles as biocompatible and sustainable synthetic receptors for the detection of cardiac troponin I, a key biomarker of myocardial infarction. The study introduces a design strategy based on renewable castor oil–derived monomers as eco-friendly functional components in MIP synthesis. The resulting MIP nanoparticles exhibit excellent stability and high recognition performance, demonstrating that environmentally sustainable materials can effectively replace conventional monomers in advanced MIP-based sensors. Paper IV presents the development of a high-sensitivity optical sensor for cardiac troponin I detection, integrating castor oil-derived green MIP nanoparticles into a miniaturized plastic optical fiber surface plasmon resonance transducer. The study evaluates the feasibility of employing these sustainable nanoreceptors in a plasmonic configuration to achieve ultrasensitive and selective detection suitable for point-of-care diagnostics.| File | Dimensione | Formato | |
|---|---|---|---|
|
PhD thesis_Marinangeli Alice.pdf
accesso aperto
Licenza:
Tutti i diritti riservati
Dimensione
30.87 MB
Formato
Adobe PDF
|
30.87 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/354186
URN:NBN:IT:UNIVR-354186