Immunizations prime the body to defend itself against viruses, significantly reducing the risk of infection and, more importantly, the risk of severe disease and death. This is the underlying idea of this thesis, and it addresses two major objectives: (1) to evaluate novel anti-idiotype antibody-derived fragments as potential Human Immunodeficiency Virus type 1 (HIV-1) immunogens, and (2) to develop therapeutic antibodies against measles virus (MeV) central nervous system (CNS) complications; all in pre-clinical settings. As of 2024, more than 40 million people worldwide were living with HIV-1, including over 1.4 million children aged 0 to 14. Even though long-lasting antiretroviral therapy (ART) allows the decrease of the viral load to an undetectable value, there is currently no available treatment that completely eradicates HIV-1. Therefore, the necessity of an effective vaccine emphasizes the medical need to continue researching novel molecules, and a prophylactic approach appears promising. Over the years, different pieces of evidence have suggested that immunoglobulins generated against the idiotype region of an anti-HIV-1 antibody could have a paratope structurally similar to the primary antibody. This similarity could allow them to bind to the original target. Moreover, engineered antibody fragments also offer new biopharmaceutical opportunities because of their smaller size. For this reason, antigen-binding fragment (Fab), single-chain variable fragment (scFv), and minibody (Mb) derived from an anti-idiotype HIV-1 antibody (P1) were administered in vivo in both rabbits and non-human primates (NHPs) following two distinct vaccination protocols. The objective was to determine whether several anti-idiotype antibody-derived fragments could elicit a specific immune response against the outer envelope glycoprotein gp120, which is HIV-1’s main antibody target. Only the Mb VHVL format appeared to be highly effective in generating strong and long-lasting anti-gp120 antibodies in rabbits. This discovery is promising and raises the possibility of investigating this antibody-derived fragment as an HIV-1 immunogen in further detail. Rather, NHPs did not exhibit a distinct HIV-1 anti-gp120 humoral response with none of the P1-derived fragments tested. Modifications in vaccine immunization, including combining multiple P1 antibody fragments while boosting with the trimeric SOSIP constructs, and either changing or employing adjuvant combinations, should be explored to evaluate an enhancement in immunogenicity and so in the overall antibodies elicited. The second part of this thesis focuses on MeV, another major global health threat. As of August 2025, 32 measles outbreaks were officially reported in the United States (U.S.), with 92% of cases occurring in unvaccinated individuals. The rise of vaccine hesitancy contributes to a decrease in MeV vaccination, resulting in 10.3 million infected people worldwide in 2023. MeV is highly contagious and, since herd immunity has not been reached, poses a severe threat to all vulnerable populations who cannot receive the live-attenuated measles vaccine. Furthermore, when MeV infection happens in children less than 12 months old, the CNS experiences complications, including the lethal subacute sclerosing panencephalitis (SSPE), which occurs in the same children at a rate of 1:609, years after the disease has been cleared. In this thesis, an ‘antibody cocktail’ consisting of three anti-MeV humanized antibodies (77.1, Y10F, and H55) was initially tested in vitro to evaluate its potential for both prophylactic and therapeutic applications. Briefly, 77.1 binds to the pre-fusion conformation of the F MeV protein, stabilizing it in an intermediate state. Y10F recognizes the apex region of the F protein, locking the F in the pre-fusion conformation, while H55 binds the H protein, preventing the F protein from activating and interacting with the receptor. Therefore, combining all three antibodies resulted in a significant increase in inhibitory capacity, indicating a synergistic activity. Following, since MeV CNS complications are currently untreatable, a three amino acid modification (M252Y/S254T/T256E [YTE]) in the constant fraction (Fc) of 77.1 (77.1YTE) was tested in vivo to determine whether this modification would increase the antibody CNS localization in comparison to its unaltered version (77.1). As a result, 77.1YTE efficiently localizes in the CNS, remaining detectable still after 168 hours post-injection. Furthermore, 77.1YTE retains the ability to bind the natural conformation of the MeV F protein, suggesting that 77.1YTE could be efficient against CNS-adapted MeV viruses, representing a first significant advancement as a potential therapeutic approach.
Le vaccinazioni preparano il corpo a difendersi dai virus, riducendo notevolmente il rischio di infezione e, in particolare, di malattia grave e morte. La tesi in questione affronta due obiettivi principali basati su questa concezione: (1) esaminare vari frammenti derivati da un anticorpo anti-idiotipo come potenziali immunogeni per il virus dell'immunodeficienza umana di tipo 1 (HIV-1) e (2) sviluppare anticorpi terapeutici contro le complicanze del virus del morbillo (MeV) a livello del sistema nervoso centrale (SNC), il tutto in un contesto preclinico. Alla fine del 2024, più di 40 milioni di persone in tutto il mondo erano HIV-1 positive, con oltre 1.4 milioni di bambini di età compresa tra 0 e 14 anni. Sebbene la terapia antiretrovirale (ART) a lungo termine permetta di ridurre il carico virale a valori non rilevabili, attualmente non esiste un trattamento che eradichi completamente l'HIV-1. Pertanto, la necessità di un vaccino efficace sottolinea l'importanza della continua ricerca medica su nuove molecole, in particolare applicate alla vaccinoprofilassi. Nel corso degli anni, una serie di evidenze hanno suggerito che le immunoglobuline sviluppate contro la regione idiotipica di un anticorpo anti-HIV-1 potrebbero avere un paratopo strutturalmente simile a quello dell'anticorpo primario. Questa somiglianza potrebbe permettere loro di legarsi all’antigene originale. Inoltre, grazie alle loro ridotte dimensioni, i frammenti di anticorpo ingegnerizzati offrono nuove opportunità biofarmaceutiche. Per questo motivo, il frammento legante l’antigene (Fab), il frammento variabile a catena singola (scFv) e il minibody (Mb) ottenuti da un anticorpo anti-idiotipo HIV-1 (P1) sono stati somministrati in vivo sia in conigli che in primati non umani (NHP) applicando due protocolli di vaccinazione distinti. L'obiettivo era determinare se diversi frammenti derivati da un anticorpo anti-idiotipo potessero indurre una risposta immunitaria specifica contro la glicoproteina esterna gp120, il principale bersaglio anticorpale dell'HIV-1. Il formato Mb VHVL si è rivelato l’unico altamente efficace nel generare elevati livelli di anticorpi anti-gp120 nei conigli. Questa scoperta è promettente e apre la possibilità per ulteriori studi su questo frammento ingegnerizzato progettato per funzionare come immunogeno per l’HIV-1. Al contrario, nessuno dei frammenti testati derivati da P1 ha mostrato di indurre una risposta umorale anti-gp120 HIV-1 negli NHP. Per valutare un potenziamento dell’immunogenicità e della qualità complessiva degli anticorpi elicitati, dovrebbero essere esplorate modifiche nei protocolli di immunizzazione vaccinale impiegati. I cambiamenti potrebbero includere la combinazione di più frammenti dell'anticorpo P1 con dosi di richiamo a base di costrutti trimerici SOSIP e il cambio o l’impiego di combinazioni di adiuvanti. La seconda parte di questa tesi si concentra sul MeV, un'altra grave minaccia per la salute globale. Ad agosto 2025, negli Stati Uniti d’America sono stati ufficialmente riportati 32 focolai di morbillo, con il 92% dei casi tra individui non vaccinati. L'aumento dell’esitazione vaccinale contribuisce a una diminuzione della vaccinazione contro il MeV, arrivando globalmente, nel 2023, a 10.3 milioni di persone infette. Il MeV è altamente contagioso e, poiché non è stata raggiunta l'immunità di gregge, rappresenta una grave minaccia per tutte le popolazioni vulnerabili che non possono ricevere l’attuale vaccino vivo attenuato. Inoltre, quando l'infezione da MeV avviene in bambini di età inferiori ai 12 mesi, si verificano complicanze al sistema nervoso centrale (SNC), tra cui la letale panencefalite subacuta sclerosante (SSPE), che colpisce gli stessi bambini anni dopo l’eliminazione della malattia, con un’incidenza di 1:609. In questa tesi, un 'cocktail di anticorpi' composto da tre anticorpi umanizzati anti-MeV (77.1, Y10F e H55) è stato inizialmente testato in vitro per valutare il suo potenziale sia profilattico che terapeutico. In sintesi, 77.1 si lega alla conformazione di pre-fusione della proteina F del MeV, stabilizzandola in uno stato intermedio. Y10F riconosce la regione apicale della proteina F, bloccandola nella conformazione di pre- fusione, mentre H55 si lega alla proteina H, impedendo la sua interazione con il recettore e l'attivazione della proteina F. Pertanto, la combinazione di tutti e tre gli anticorpi ha comportato un significativo aumento della capacità inibitoria, indicando un'attività sinergica tra gli stessi. Successivamente, poiché le complicanze al SNC da MeV sono attualmente incurabili, una modifica di tre amminoacidi (M252Y/S254T/T256E [YTE]) nella frazione costante (Fc) di 77.1 (77.1YTE) è stata testata in vivo per determinare se la stessa aumentasse la localizzazione dell'anticorpo nel SNC rispetto alla versione non modificata (77.1). Di conseguenza, 77.1YTE si localizza efficientemente nel cervello, rimanendo rilevabile anche 168 ore dopo l'iniezione. Inoltre, 77.1YTE mantiene la capacità di legarsi alla conformazione naturale della proteina F del MeV, indicando che potrebbe essere efficace contro ceppi di morbillo che si diffondono nel SNC. Questo costituisce un primo, significativo progresso verso un potenziale utilizzo come approccio terapeutico.
NOVEL MOLECULAR CANDIDATES WITH PROPHYLACTIC AND THERAPEUTIC POTENTIAL AGAINST HIV AND MEASLES INFECTIONS
LATERZA, GIULIA
2026
Abstract
Immunizations prime the body to defend itself against viruses, significantly reducing the risk of infection and, more importantly, the risk of severe disease and death. This is the underlying idea of this thesis, and it addresses two major objectives: (1) to evaluate novel anti-idiotype antibody-derived fragments as potential Human Immunodeficiency Virus type 1 (HIV-1) immunogens, and (2) to develop therapeutic antibodies against measles virus (MeV) central nervous system (CNS) complications; all in pre-clinical settings. As of 2024, more than 40 million people worldwide were living with HIV-1, including over 1.4 million children aged 0 to 14. Even though long-lasting antiretroviral therapy (ART) allows the decrease of the viral load to an undetectable value, there is currently no available treatment that completely eradicates HIV-1. Therefore, the necessity of an effective vaccine emphasizes the medical need to continue researching novel molecules, and a prophylactic approach appears promising. Over the years, different pieces of evidence have suggested that immunoglobulins generated against the idiotype region of an anti-HIV-1 antibody could have a paratope structurally similar to the primary antibody. This similarity could allow them to bind to the original target. Moreover, engineered antibody fragments also offer new biopharmaceutical opportunities because of their smaller size. For this reason, antigen-binding fragment (Fab), single-chain variable fragment (scFv), and minibody (Mb) derived from an anti-idiotype HIV-1 antibody (P1) were administered in vivo in both rabbits and non-human primates (NHPs) following two distinct vaccination protocols. The objective was to determine whether several anti-idiotype antibody-derived fragments could elicit a specific immune response against the outer envelope glycoprotein gp120, which is HIV-1’s main antibody target. Only the Mb VHVL format appeared to be highly effective in generating strong and long-lasting anti-gp120 antibodies in rabbits. This discovery is promising and raises the possibility of investigating this antibody-derived fragment as an HIV-1 immunogen in further detail. Rather, NHPs did not exhibit a distinct HIV-1 anti-gp120 humoral response with none of the P1-derived fragments tested. Modifications in vaccine immunization, including combining multiple P1 antibody fragments while boosting with the trimeric SOSIP constructs, and either changing or employing adjuvant combinations, should be explored to evaluate an enhancement in immunogenicity and so in the overall antibodies elicited. The second part of this thesis focuses on MeV, another major global health threat. As of August 2025, 32 measles outbreaks were officially reported in the United States (U.S.), with 92% of cases occurring in unvaccinated individuals. The rise of vaccine hesitancy contributes to a decrease in MeV vaccination, resulting in 10.3 million infected people worldwide in 2023. MeV is highly contagious and, since herd immunity has not been reached, poses a severe threat to all vulnerable populations who cannot receive the live-attenuated measles vaccine. Furthermore, when MeV infection happens in children less than 12 months old, the CNS experiences complications, including the lethal subacute sclerosing panencephalitis (SSPE), which occurs in the same children at a rate of 1:609, years after the disease has been cleared. In this thesis, an ‘antibody cocktail’ consisting of three anti-MeV humanized antibodies (77.1, Y10F, and H55) was initially tested in vitro to evaluate its potential for both prophylactic and therapeutic applications. Briefly, 77.1 binds to the pre-fusion conformation of the F MeV protein, stabilizing it in an intermediate state. Y10F recognizes the apex region of the F protein, locking the F in the pre-fusion conformation, while H55 binds the H protein, preventing the F protein from activating and interacting with the receptor. Therefore, combining all three antibodies resulted in a significant increase in inhibitory capacity, indicating a synergistic activity. Following, since MeV CNS complications are currently untreatable, a three amino acid modification (M252Y/S254T/T256E [YTE]) in the constant fraction (Fc) of 77.1 (77.1YTE) was tested in vivo to determine whether this modification would increase the antibody CNS localization in comparison to its unaltered version (77.1). As a result, 77.1YTE efficiently localizes in the CNS, remaining detectable still after 168 hours post-injection. Furthermore, 77.1YTE retains the ability to bind the natural conformation of the MeV F protein, suggesting that 77.1YTE could be efficient against CNS-adapted MeV viruses, representing a first significant advancement as a potential therapeutic approach.| File | Dimensione | Formato | |
|---|---|---|---|
|
phd_unimi_R14085.pdf
embargo fino al 16/07/2027
Licenza:
Creative Commons
Dimensione
29.69 MB
Formato
Adobe PDF
|
29.69 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/354634
URN:NBN:IT:UNIMI-354634