Antimicrobial resistance (AMR) is one of the most pressing threats to global health, underscoring the need for novel strategies to combat multidrug-resistant bacteria. This thesis presents two structural biology projects addressing this challenge through the study of key bacterial and bacteriophage proteins. The first part focuses on the O-antigen flippase Wzx from Pseudomonas aeruginosa, an integral membrane protein essential for lipopolysaccharide biosynthesis and bacterial virulence. The protein was recombinantly expressed and purified, and its biochemical behavior was investigated using biophysical analyses. Crystallization trials and cryo-electron microscopy experiments were initiated to characterize its structure. Unfortunately, both structural techniques presented challenges that could not be overcome at this time. However, interesting insights into the protein stability and mechanism of action were obtained from molecular dynamics simulations of an AlphaFold model. The second part of the thesis concerns the structural and functional characterization of the endoglycosidase of bacteriophage ϕBO1E, active against the capsular polysaccharide (CPS) of Klebsiella pneumoniae KpB-1, a highly virulent strain. The enzyme was successfully expressed, purified, and crystallized. X-ray diffraction data collected at the Elettra synchrotron allowed the determination of its structure at 1.3 Å resolution. Structural comparison with homologous phage depolymerases identified a potential catalytic site located at the interface between monomers. Complementary cryo-electron microscopy analyses of both the apo and substrate-bound forms of the endoglycodisase are underway to further elucidate its catalytic mechanism. Together, these studies contribute to the understanding of bacterial surface assembly mechanisms and phage-derived enzymatic systems, providing a structural framework for the future design of novel antimicrobial agents based on membrane protein inhibition or phage enzyme engineering.
La resistenza antimicrobica (AMR) rappresenta una delle minacce più urgenti per la salute globale, ed è evidente la necessità di sviluppare nuove strategie per contrastare i batteri multiresistenti. Questa tesi presenta due progetti di biologia strutturale che affrontano tale sfida attraverso lo studio di proteine batteriche e fagicche di fondamentale rilevanza. La prima parte è dedicata alla flippasi dell’O-antigene Wzx di Pseudomonas aeruginosa, una proteina di membrana integrale essenziale per la biosintesi dei lipopolisaccaridi e per la virulenza batterica. La proteina è stata espressa e purificata, e il suo comportamento biochimico è stato analizzato mediante tecniche biofisiche. Sono stati avviati tentativi di cristallizzazione ed esperimenti di crio-microscopia elettronica per caratterizzarne la struttura. Sfortunatamente, entrambe le tecniche strutturali hanno presentato difficoltà che non è stato possibile superare in questa fase. Tuttavia, simulazioni di dinamica molecolare basate su un modello AlphaFold hanno fornito interessanti indicazioni sulla stabilità e sul possibile meccanismo d’azione della proteina. La seconda parte della tesi riguarda la caratterizzazione strutturale e funzionale dell’endoglicosidasi del batteriofago ϕBO1E, attiva contro il polisaccaride capsulare (CPS) di Klebsiella pneumoniae KpB-1, un ceppo altamente virulento. L’enzima è stato espresso, purificato e cristallizzato con successo. I dati di diffrazione ai raggi X raccolti presso il sincrotrone Elettra hanno permesso di determinarne la struttura con una risoluzione di 1,3 Å. Il confronto strutturale con depolimerasi fagicche omologhe ha permesso di identificare un potenziale sito catalitico localizzato all’interfaccia tra i monomeri. Analisi complementari di crio-microscopia elettronica, condotte sia sulla forma apo che su quella legata al substrato dell’endoglicosidasi, sono attualmente in corso per chiarirne ulteriormente il meccanismo catalitico. Nel complesso, questi studi contribuiscono alla comprensione dei meccanismi di assemblaggio delle superfici batteriche e dei sistemi enzimatici derivati da fagi, fornendo una base strutturale per la progettazione futura di nuovi agenti antimicrobici basati sull’inibizione di proteine di membrana o sull’ingegnerizzazione di enzimi fagicchi.
From bacterial resistance to vulnerability: structural characterization of a P. aeruginosa flippase and a phage depolymerase targeting K. pneumoniae.
DE CONTO, MARCO
2026
Abstract
Antimicrobial resistance (AMR) is one of the most pressing threats to global health, underscoring the need for novel strategies to combat multidrug-resistant bacteria. This thesis presents two structural biology projects addressing this challenge through the study of key bacterial and bacteriophage proteins. The first part focuses on the O-antigen flippase Wzx from Pseudomonas aeruginosa, an integral membrane protein essential for lipopolysaccharide biosynthesis and bacterial virulence. The protein was recombinantly expressed and purified, and its biochemical behavior was investigated using biophysical analyses. Crystallization trials and cryo-electron microscopy experiments were initiated to characterize its structure. Unfortunately, both structural techniques presented challenges that could not be overcome at this time. However, interesting insights into the protein stability and mechanism of action were obtained from molecular dynamics simulations of an AlphaFold model. The second part of the thesis concerns the structural and functional characterization of the endoglycosidase of bacteriophage ϕBO1E, active against the capsular polysaccharide (CPS) of Klebsiella pneumoniae KpB-1, a highly virulent strain. The enzyme was successfully expressed, purified, and crystallized. X-ray diffraction data collected at the Elettra synchrotron allowed the determination of its structure at 1.3 Å resolution. Structural comparison with homologous phage depolymerases identified a potential catalytic site located at the interface between monomers. Complementary cryo-electron microscopy analyses of both the apo and substrate-bound forms of the endoglycodisase are underway to further elucidate its catalytic mechanism. Together, these studies contribute to the understanding of bacterial surface assembly mechanisms and phage-derived enzymatic systems, providing a structural framework for the future design of novel antimicrobial agents based on membrane protein inhibition or phage enzyme engineering.| File | Dimensione | Formato | |
|---|---|---|---|
|
DeConto_revised.pdf
accesso aperto
Licenza:
Tutti i diritti riservati
Dimensione
7.07 MB
Formato
Adobe PDF
|
7.07 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/355392
URN:NBN:IT:UNITS-355392