Polymorphism, the ability of a material to exist in multiple crystalline structures while maintaining the same chemical composition, is a characteristic of several oxide glasses. Among these, diboron trioxide (B₂O₃) stands out as a particularly intriguing case. Despite being one of the most important glass-forming oxides, B₂O₃ exhibits only two known crystalline polymorphs, both synthesized under high-pressure conditions. These crystalline structures are composed of structural units distinct from those found in the vitreous phase, which features boroxol rings alongside other units. This structural difference between the crystalline and glassy phases represents an apparent deviation from the general understanding of glass formation. This thesis addresses this discrepancy by investigating whether boroxol-based crystalline phases of B₂O₃ can exist at ambient pressure, whether both crystalline and glassy forms can be obtained in two dimensions, and whether such findings could reconcile B₂O₃ with the general models of glass formation. Using a surface-assisted, thermally driven synthesis process on Pt(111), a 2D crystalline polymorph of B₂O₃, composed exclusively of boroxol units, has been observed for the first time. Advanced experimental surface science techniques, including STM, CO-functionalized STM, LEEM, μ-LEED, μ-XPS, μ-NEXAFS, and μ-ARPES, combined with density functional theory (DFT) calculations, provide an atomic-scale understanding of its structure, stoichiometry, and electronic properties: 2D B₂O₃ is a wide band gap semiconductor with minimal interaction with the substrate and remarkable mechanical flexibility. Additionally, controlled thermal annealing leads to the conversion of the crystalline layer into a vitreous 2D B₂O₃ film, still allowing direct atomic-scale imaging of the glassy network’s building blocks. The atomic-scale study of this transition clarified the long-standing structural ambiguity between vitreous and crystalline B₂O₃, revealing that the vitreous phase mainly shares the same fundamental units and chemical environment as the crystalline phase, finally reconciling B₂O₃ with the universal models describing glass-forming materials. The proved similarity between the short and medium range order in these 2D polymorphs and their known 3D vitreous counterpart validates the use of 2D oxide layers as model systems to study oxide glass formation in 3D. These findings not only shed light on the fundamental physics of oxide polymorphism but also open pathways for various applications of 2D B₂O₃. The unique combination of wide band gap, mechanical flexibility, and atomic porosity qualifies this material as a promising candidate for ultrathin insulating films and selective chemical filters. Additionally, 2D B₂O₃ and its different polymorphs could be used as seed templates for novel borate crystal growth.
Il polimorfismo, ossia la capacità di un materiale di esistere in più strutture cristalline mantenendo la stessa composizione chimica, è una caratteristica propria di diversi ossidi vetrosi. Tra questi, il triossido di diboro (B₂O₃) si distingue come un caso particolarmente interessante. Nonostante sia uno degli ossidi vetrosi più importanti, il B₂O₃ presenta solo due polimorfi cristallini conosciuti, entrambi ottenuti in condizioni di alta pressione. Queste strutture cristalline sono costituite da unità strutturali differenti da quelle presenti nella fase vetrosa, la quale contiene anelli di borossolo insieme ad altre unità. Questa differenza strutturale tra le fasi cristalline e la fase vetrosa rappresenta una deviazione rispetto alla teoria generale della formazione dei vetri. Questa tesi affronta tale discrepanza, investigando se fasi cristalline del B₂O₃ contenenti anelli di borossolo possano esistere a pressione ambiente, se sia possibile ottenere forme cristalline e vetrose bidimensionali, e se tali risultati possano riconciliare il comportamento del B₂O₃ con i modelli generali di formazione del vetro. Utilizzando un processo di sintesi indotto termicamente e assistito da una superficie di Pt(111), è stato osservato per la prima volta un polimorfo cristallino bidimensionale del B₂O₃, composto esclusivamente da unità di borossolo. Tecniche avanzate di scienza delle superfici, tra cui STM, STM funzionalizzato con CO, LEEM, μ-LEED, μ-XPS, μ-NEXAFS e μ-ARPES, combinate con calcoli di teoria del funzionale della densità (DFT), hanno fornito una comprensione su scala atomica della sua struttura, stechiometria e delle sue proprietà elettroniche: il B₂O₃ bidimensionale è un semiconduttore a band gap ampio, mostra un’interazione minima con il substrato e possiede una notevole flessibilità meccanica. Inoltre, un riscaldamento termico controllato porta alla conversione dello strato cristallino in un film vetroso bidimensionale di B₂O₃, consentendo ancora l’imaging diretto su scala atomica degli elementi costitutivi della rete vetrosa. Lo studio atomico di questa transizione ha chiarito la storica ambiguità strutturale tra il B₂O₃ vetroso e quello cristallino, rivelando che la fase vetrosa condivide principalmente gli stessi elementi costitutivi e lo stesso ambiente chimico della fase cristallina, riconciliando così il B₂O₃ con i modelli universali che descrivono i materiali vetrosi. La somiglianza comprovata tra l’ordine a corto e medio raggio di questi polimorfi bidimensionali e la loro controparte vetrosa tridimensionale conferma il potenziale utilizzo degli ossidi 2D come sistemi modello per lo studio della formazione del vetro negli ossidi tridimensionali. Questi risultati non solo fanno luce sulla fisica fondamentale del polimorfismo negli ossidi, ma aprono anche la strada a diverse applicazioni del B₂O₃ bidimensionale. La combinazione di ampio band gap, flessibilità meccanica e porosità atomica rende questo materiale un candidato promettente per film isolanti ultrafini e filtri chimici selettivi. Inoltre, il B₂O₃ bidimensionale e i suoi diversi polimorfi potrebbero essere utilizzati come modelli di crescita per nuovi cristalli di ossido di boro.
Sintesi di B₂O₃ bidimensionale e caratterizzazione delle sue fasi cristalline e vetrose
ZIO, TERESA
2026
Abstract
Polymorphism, the ability of a material to exist in multiple crystalline structures while maintaining the same chemical composition, is a characteristic of several oxide glasses. Among these, diboron trioxide (B₂O₃) stands out as a particularly intriguing case. Despite being one of the most important glass-forming oxides, B₂O₃ exhibits only two known crystalline polymorphs, both synthesized under high-pressure conditions. These crystalline structures are composed of structural units distinct from those found in the vitreous phase, which features boroxol rings alongside other units. This structural difference between the crystalline and glassy phases represents an apparent deviation from the general understanding of glass formation. This thesis addresses this discrepancy by investigating whether boroxol-based crystalline phases of B₂O₃ can exist at ambient pressure, whether both crystalline and glassy forms can be obtained in two dimensions, and whether such findings could reconcile B₂O₃ with the general models of glass formation. Using a surface-assisted, thermally driven synthesis process on Pt(111), a 2D crystalline polymorph of B₂O₃, composed exclusively of boroxol units, has been observed for the first time. Advanced experimental surface science techniques, including STM, CO-functionalized STM, LEEM, μ-LEED, μ-XPS, μ-NEXAFS, and μ-ARPES, combined with density functional theory (DFT) calculations, provide an atomic-scale understanding of its structure, stoichiometry, and electronic properties: 2D B₂O₃ is a wide band gap semiconductor with minimal interaction with the substrate and remarkable mechanical flexibility. Additionally, controlled thermal annealing leads to the conversion of the crystalline layer into a vitreous 2D B₂O₃ film, still allowing direct atomic-scale imaging of the glassy network’s building blocks. The atomic-scale study of this transition clarified the long-standing structural ambiguity between vitreous and crystalline B₂O₃, revealing that the vitreous phase mainly shares the same fundamental units and chemical environment as the crystalline phase, finally reconciling B₂O₃ with the universal models describing glass-forming materials. The proved similarity between the short and medium range order in these 2D polymorphs and their known 3D vitreous counterpart validates the use of 2D oxide layers as model systems to study oxide glass formation in 3D. These findings not only shed light on the fundamental physics of oxide polymorphism but also open pathways for various applications of 2D B₂O₃. The unique combination of wide band gap, mechanical flexibility, and atomic porosity qualifies this material as a promising candidate for ultrathin insulating films and selective chemical filters. Additionally, 2D B₂O₃ and its different polymorphs could be used as seed templates for novel borate crystal growth.| File | Dimensione | Formato | |
|---|---|---|---|
|
PhD_Thesis_Zio.pdf
embargo fino al 23/01/2027
Licenza:
Tutti i diritti riservati
Dimensione
19.65 MB
Formato
Adobe PDF
|
19.65 MB | Adobe PDF | |
|
PhD_Thesis_Zio_1.pdf
embargo fino al 23/01/2027
Licenza:
Tutti i diritti riservati
Dimensione
19.65 MB
Formato
Adobe PDF
|
19.65 MB | Adobe PDF | |
|
PhD_Thesis_Zio_2.pdf
embargo fino al 23/01/2027
Licenza:
Tutti i diritti riservati
Dimensione
19.65 MB
Formato
Adobe PDF
|
19.65 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/355394
URN:NBN:IT:UNITS-355394