This thesis explores the design, synthesis, and mechanistic understanding of carbon nitride (CN), based photocatalysts, a versatile and easily tunable semiconductor capable of catalyzing photoredox processes under visible light. In the first chapter, the material is employed in its pristine form (graphitic carbon nitride, g-CN) for the direct aerobic formylation of N,N-dialkyl anilines, proceeding under mild conditions through a mechanism involving charge separation, formation of α-amino radicals, and reaction with photogenerated superoxide species. This synthetic strategy enabled the aerobic formylation in a scope of 15 amine substrates, highlighting the potential of CN as a cornerstone material for next-generation photocatalytic systems. The thesis emphasizes the importance of reproducibility and standardization in CN-based photoredox chemistry. The high sensitivity of CN materials to even subtle synthetic parameters underscore the need for transparent documentation and standardized protocols. For this reason, dedicated sections of the thesis propose a set of good practices aimed at harmonizing scientific reporting on CN synthesis and its application in photoredox reactions, thereby ensuring data comparability and cross-laboratory reproducibility. Subsequently, the thesis investigates two modification strategies designed to improve the structural control of CN materials and enhance photocatalytic efficiency: “molecular stoppers” and thermal etching. The incorporation of modified precursors (molecular stoppers) during the polymerization of standard CN monomers modulated material growth at the molecular level, improving crystallinity, surface area, and hydrogen evolution activity. In an alternative synthetic approach, controlled thermal etching tuned the morphology and surface area of g-CN, reducing its thickness and increasing the specific surface area up to 190 m² g⁻¹. Photocatalytic studies on the resulting materials revealed a strong correlation between nanoscale structure, optical absorption, and catalytic performance. Specifically, hydrogen evolution and aryl dehalogenation studies confirmed that optimized structural balance, rather than surface area alone, governs reactivity. Overall, these results advance the molecular-level understanding of how structural order affects photocatalytic behavior. Finally, the thesis explores metal doping of CN to form single-atom catalysts (SACs). CN-supported SACs offer high atomic efficiency, tunable electronic structure, and potential for stable and recyclable systems, while also presenting significant synthetic, characterization, and stability challenges. The experimental section of the chapter reports the synthesis of Ni and Cu SACs via a solvent-mediated impregnation method, producing atomically dispersed single-metal sites. Spectroscopic analyses revealed distinct redox behaviors at the metal centers: nickel maintained a reversible Ni²⁺/Ni⁺ cycle and exhibited high activity in C-N and C-O photoredox coupling reactions, whereas copper underwent irreversible reduction on the CN surface, yielding inactive Cu⁺ species. These findings indicate that catalytic performance is governed by the interplay between redox dynamics and CN-metal interactions. In summary, this work establishes CNs as a robust and tunable platforms for visible-light photocatalysis. By integrating mechanistic understanding, structural modulation, and methodological rigor, it contributes to the development of efficient photocatalytic systems and lays the groundwork for the rational design of next-generation CN-based materials.
In questa tesi viene utilizzato, nella sua forma grafitica non modificata (g-CN), per la formilazione aerobica diretta di N,N-dialchil aniline, procedendo in condizioni miti tramite un meccanismo che coinvolge separazione di carica, formazione di radicali α-amminici e reazione con specie di superossido fotogenerate. Questa strategia sintetica ha permesso la formilazione aerobica su una libreria di 15 substrati amminici evidenziano il potenziale del CN come materiale cardine per sistemi fotocatalitici di nuova generazione. La tesi sottolinea l’importanza della riproducibilità e standardizzazione nella chimica fotoredox basata su CN. La sensibilità dei materiali CN a parametri sintetici anche minimi evidenzia la necessità di una documentazione trasparente e protocolli standardizzati. Per questo motivo, in sezioni dedicate della tesi, vengono proposte delle buone prassi di riferimento per armonizzare le relazioni scientifiche sulla sintesi dei materiali e la loro applicazione nelle reazioni fotoredox e di conseguenza garantire la comparabilità dei dati e la riproducibilità tra laboratori. L’incorporazione di precursori modificati (stoppers) nella polimerizzazione di monomeri standard del CN ha modulato la crescita del materiale a livello molecolare, migliorandone la cristallinità, l’area superficiale e l’attività per l’evoluzione dell’idrogeno. In un diverso approccio sintetico, l’etching termico controllato ha regolato la morfologia e l’area superficiale del g-CN, diminuendone lo spessore e incrementando l’ area superficiale. Dai seguenti studi fotocatalitici sui materiali ottenuti, è emersa una stretta correlazione tra struttura nanoscopica, assorbimento ottico e prestazioni catalitiche. Nello specifico, studi sull’evoluzione dell’idrogeno e sulla dealogenazione di arili hanno confermato che è l’equilibrio strutturale ottimizzato, più che la sola area superficiale, a determinare la reattività. Questi risultati avanzano la comprensione a livello molecolare di come l’ordine strutturale influenzi il comportamento fotocatalitico. Infine, la tesi esplora il drogaggio metallico del CN per formare catalizzatori a singolo atomo (SACs). I SACs supportati su CN offrono alta efficienza atomica, struttura elettronica modulabile e potenziale per sistemi stabili e riciclabili. Allo stesso tempo, però, presentano numerose sfide sintetiche, di caratterizzazione e di stabilità. Nella parte sperimentale del capitolo, è presentata la sintesi di Ni e Cu SACs mediante un metodo di impregnazione mediato da solvente, producendo singoli siti metallici dispersi a livello atomico. Analisi spettroscopiche hanno rivelato comportamenti redox distinti nel sito metallico: il nichel mantiene un ciclo reversibile Ni²⁺/Ni⁺ ed esibisce elevata attività nelle reazioni di accoppiamento photoredox C-N e C-O, mentre il rame subisce una riduzione irreversibile sulla superficie del CN, risultando in specie Cu⁺ inattive. Dai risultati ottenuti si evince che le prestazioni catalitiche sono governate dall’equilibrio tra dinamiche redox e interazioni CN-metallo. Questo lavoro stabilisce il CN come una piattaforma robusta e modulabile per la fotocatalisi in luce visibile. Integrando comprensione meccanicistica, modulazione strutturale e rigore metodologico, esso contribuisce allo sviluppo di sistemi fotocatalitici efficienti, ponendo le basi per la progettazione razionale di materiali CN di nuova generazione.
Development of metal-free photocatalysts for advanced photocatalytic organic synthesis
GRANDO, GAIA
2026
Abstract
This thesis explores the design, synthesis, and mechanistic understanding of carbon nitride (CN), based photocatalysts, a versatile and easily tunable semiconductor capable of catalyzing photoredox processes under visible light. In the first chapter, the material is employed in its pristine form (graphitic carbon nitride, g-CN) for the direct aerobic formylation of N,N-dialkyl anilines, proceeding under mild conditions through a mechanism involving charge separation, formation of α-amino radicals, and reaction with photogenerated superoxide species. This synthetic strategy enabled the aerobic formylation in a scope of 15 amine substrates, highlighting the potential of CN as a cornerstone material for next-generation photocatalytic systems. The thesis emphasizes the importance of reproducibility and standardization in CN-based photoredox chemistry. The high sensitivity of CN materials to even subtle synthetic parameters underscore the need for transparent documentation and standardized protocols. For this reason, dedicated sections of the thesis propose a set of good practices aimed at harmonizing scientific reporting on CN synthesis and its application in photoredox reactions, thereby ensuring data comparability and cross-laboratory reproducibility. Subsequently, the thesis investigates two modification strategies designed to improve the structural control of CN materials and enhance photocatalytic efficiency: “molecular stoppers” and thermal etching. The incorporation of modified precursors (molecular stoppers) during the polymerization of standard CN monomers modulated material growth at the molecular level, improving crystallinity, surface area, and hydrogen evolution activity. In an alternative synthetic approach, controlled thermal etching tuned the morphology and surface area of g-CN, reducing its thickness and increasing the specific surface area up to 190 m² g⁻¹. Photocatalytic studies on the resulting materials revealed a strong correlation between nanoscale structure, optical absorption, and catalytic performance. Specifically, hydrogen evolution and aryl dehalogenation studies confirmed that optimized structural balance, rather than surface area alone, governs reactivity. Overall, these results advance the molecular-level understanding of how structural order affects photocatalytic behavior. Finally, the thesis explores metal doping of CN to form single-atom catalysts (SACs). CN-supported SACs offer high atomic efficiency, tunable electronic structure, and potential for stable and recyclable systems, while also presenting significant synthetic, characterization, and stability challenges. The experimental section of the chapter reports the synthesis of Ni and Cu SACs via a solvent-mediated impregnation method, producing atomically dispersed single-metal sites. Spectroscopic analyses revealed distinct redox behaviors at the metal centers: nickel maintained a reversible Ni²⁺/Ni⁺ cycle and exhibited high activity in C-N and C-O photoredox coupling reactions, whereas copper underwent irreversible reduction on the CN surface, yielding inactive Cu⁺ species. These findings indicate that catalytic performance is governed by the interplay between redox dynamics and CN-metal interactions. In summary, this work establishes CNs as a robust and tunable platforms for visible-light photocatalysis. By integrating mechanistic understanding, structural modulation, and methodological rigor, it contributes to the development of efficient photocatalytic systems and lays the groundwork for the rational design of next-generation CN-based materials.| File | Dimensione | Formato | |
|---|---|---|---|
|
Tesi_ Gaia Grando.pdf
embargo fino al 23/01/2027
Licenza:
Tutti i diritti riservati
Dimensione
15.11 MB
Formato
Adobe PDF
|
15.11 MB | Adobe PDF | |
|
Tesi_ Gaia Grando_1.pdf
embargo fino al 23/01/2027
Licenza:
Tutti i diritti riservati
Dimensione
15.11 MB
Formato
Adobe PDF
|
15.11 MB | Adobe PDF | |
|
Tesi_ Gaia Grando_2.pdf
embargo fino al 23/01/2027
Licenza:
Tutti i diritti riservati
Dimensione
15.11 MB
Formato
Adobe PDF
|
15.11 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/355395
URN:NBN:IT:UNITS-355395