We study the positivity properties of Ulrich bundles defined with respect to an ample and globally generated polarization. First we prove a generalization of a theorem by Lopez on the first Chern class. Then, under some additional assumptions on the polarization, we give a description of its augmented base locus, which consequently leads to a characterization of the V-bigness and of the ampleness of an Ulrich bundle in this setting. Finally we study the normal generation of an Ulrich bundle focusing on curves, on surfaces with q=p_g=0 and on hypersurfaces of dimension 2 and 3.

On the positivity of Ulrich bundles

buttinelli, Valerio
2026

Abstract

We study the positivity properties of Ulrich bundles defined with respect to an ample and globally generated polarization. First we prove a generalization of a theorem by Lopez on the first Chern class. Then, under some additional assumptions on the polarization, we give a description of its augmented base locus, which consequently leads to a characterization of the V-bigness and of the ampleness of an Ulrich bundle in this setting. Finally we study the normal generation of an Ulrich bundle focusing on curves, on surfaces with q=p_g=0 and on hypersurfaces of dimension 2 and 3.
20-gen-2026
Inglese
Lopez, Angelo Felice
FIORENZA, DOMENICO
FIORENZA, DOMENICO
Università degli Studi di Roma "La Sapienza"
File in questo prodotto:
File Dimensione Formato  
Tesi_dottorato_Buttinelli.pdf

accesso aperto

Licenza: Creative Commons
Dimensione 1.35 MB
Formato Adobe PDF
1.35 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/355406
Il codice NBN di questa tesi è URN:NBN:IT:UNIROMA1-355406