The presence of biofilms on medical devices represents a major clinical challenge, given their critical role in the development of infections. In particular, when these devices are exposed to fluid flow, filamentous biofilms or streamers frequently occur. In these suspended biofilms, extracellular DNA (eDNA) serves as the supporting backbone and are especially relevant in indwelling devices such as urinary catheters, where the development of streamers can partially or completely obstruct the lumen of these devices. In such environments, residing bacterial communities are also frequently exposed to sub-inhibitory concentrations of antibiotics (sub-MIC), as well as variations in temperature, nutrient availability, and hydrodynamic stress, all of which have the potential to influence biofilm streamer onset and progression. The inherent fragility of biofilm streamers and the inability to be isolated for traditional in vitro studies have historically prevented a systematic characterization of their growth under complex environmental conditions. To overcome these limitations, a microfluidic platform was developed that integrates micropillars to generate controlled hydrodynamic gradients, enabling reproducible streamer formation, combined with live-cell microscopy and automated image analysis. Using this system, the effects of sub-MIC concentrations of colistin, tobramycin, and norfloxacin on Pseudomonas aeruginosa streamers were evaluated under clinically relevant conditions: at 25°C and 37 °C in tryptone broth (TB) and in artificial urine (AU) to mimic the urinary tract. In parallel, streamer-induced clogging dynamics were assessed in a porous media model designed to replicate the microarchitecture of matrices such as dialysis membranes. The results revealed that while sub-MIC antibiotics reduced initial bacterial surface coverage, they paradoxically promoted streamer development by inducing eDNA release. Among the antibiotics tested, norfloxacin, which targets DNA replication, elicited the highest levels of eDNA release, thereby driving robust streamer formation. By contrast, colistin, which disrupts the bacterial membrane, induced lower yet detectable eDNA release, while tobramycin, acting on protein synthesis, exerted minimal effect. When these conditions were applied to a P. aeruginosa multidrug-resistant strain, the impact of norfloxacin on promoting lysis and eDNA release was even more pronounced. These effects were highly dependent on temperature and medium composition, with AU producing distinct susceptibility profiles compared to TB. Overall, this work highlights the critical role of microenvironment-specific factors in shaping biofilm architecture and treatment response, underscoring the need to refine therapeutic strategies for managing device-associated infections.
La formazione di biofilm sui dispositivi medici rappresenta una rilevante sfida clinica, poiché costituisce un elemento chiave nello sviluppo e nella persistenza delle infezioni. In particolare, quando tali dispositivi sono esposti al flusso di fluidi, si osserva frequentemente la comparsa di biofilm filamentosi, o streamer. In queste strutture sospese, il DNA extracellulare (eDNA) funge da componente portante essenziale ed è particolarmente rilevante nei dispositivi a permanenza, come i cateteri urinari, nei quali la formazione di streamer può determinare un’ostruzione parziale o completa del lume. In tali microambienti, le comunità batteriche sono spesso sottoposte a concentrazioni sub-inibitorie di antibiotici (sub-MIC), oltre che a variazioni di temperatura, disponibilità di nutrienti e stress idrodinamico—tutti fattori in grado di modulare l’insorgenza e la progressione degli streamer. Tuttavia, la fragilità intrinseca di queste strutture e l’impossibilità di isolarle con approcci in vitro convenzionali hanno storicamente limitato una caratterizzazione sistematica della loro crescita in condizioni ambientali complesse. Per superare queste limitazioni, è stata sviluppata una piattaforma microfluidica dotata di micropilastri in grado di generare gradienti idrodinamici controllati, consentendo la formazione riproducibile degli streamer, integrata con microscopia in time-lapse e analisi automatizzata delle immagini. Attraverso questo sistema, sono stati valutati gli effetti delle concentrazioni sub-MIC di colistina, tobramicina e norfloxacina sugli streamer di Pseudomonas aeruginosa in condizioni clinicamente rilevanti: a 25 °C e 37 °C nel triptone broth (TB), e in urina artificiale (AU) per mimare il tratto urinario. Parallelamente, la dinamica di clogging indotta dagli streamer è stata analizzata in un modello di mezzo poroso progettato per riprodurre la microarchitettura di matrici filtranti, come le membrane per dialisi. I risultati hanno mostrato che, sebbene gli antibiotici in condizioni sub-MIC riducessero l’adesione batterica iniziale, paradossalmente promuovevano lo sviluppo degli streamer inducendo il rilascio di eDNA. Tra gli antibiotici testati, la norfloxacina—che agisce sulla replicazione del DNA—ha provocato il rilascio di eDNA più elevato, favorendo una formazione di streamer particolarmente pronunciata. Al contrario, la colistina, che compromette l’integrità della membrana esterna, ha indotto un rilascio di eDNA inferiore ma comunque significativo, mentre la tobramicina, inibitrice della sintesi proteica, ha mostrato un effetto minimo. Quando tali condizioni sono state applicate a un ceppo multiresistente di P. aeruginosa, l’effetto della norfloxacina nel promuovere la lisi e il rilascio di eDNA è risultato ulteriormente amplificato. Tali risposte si sono rivelate strettamente dipendenti dalla temperatura e dal mezzo di crescita, con l’AU che generava profili distinti rispetto al TB. Nel complesso, questo lavoro mette in evidenza il ruolo cruciale dei fattori microambientali nel modellare l’architettura del biofilm e la risposta ai trattamenti, sottolineando la necessità di ottimizzare le strategie terapeutiche per la gestione delle infezioni associate ai dispositivi medici.
Oltre la lisi cellulare batterica: l’impatto delle concentrazioni sub-inibitorie di antibiotici sulla formazione del biofilm
ALESSIA, DI CLAUDIO
2026
Abstract
The presence of biofilms on medical devices represents a major clinical challenge, given their critical role in the development of infections. In particular, when these devices are exposed to fluid flow, filamentous biofilms or streamers frequently occur. In these suspended biofilms, extracellular DNA (eDNA) serves as the supporting backbone and are especially relevant in indwelling devices such as urinary catheters, where the development of streamers can partially or completely obstruct the lumen of these devices. In such environments, residing bacterial communities are also frequently exposed to sub-inhibitory concentrations of antibiotics (sub-MIC), as well as variations in temperature, nutrient availability, and hydrodynamic stress, all of which have the potential to influence biofilm streamer onset and progression. The inherent fragility of biofilm streamers and the inability to be isolated for traditional in vitro studies have historically prevented a systematic characterization of their growth under complex environmental conditions. To overcome these limitations, a microfluidic platform was developed that integrates micropillars to generate controlled hydrodynamic gradients, enabling reproducible streamer formation, combined with live-cell microscopy and automated image analysis. Using this system, the effects of sub-MIC concentrations of colistin, tobramycin, and norfloxacin on Pseudomonas aeruginosa streamers were evaluated under clinically relevant conditions: at 25°C and 37 °C in tryptone broth (TB) and in artificial urine (AU) to mimic the urinary tract. In parallel, streamer-induced clogging dynamics were assessed in a porous media model designed to replicate the microarchitecture of matrices such as dialysis membranes. The results revealed that while sub-MIC antibiotics reduced initial bacterial surface coverage, they paradoxically promoted streamer development by inducing eDNA release. Among the antibiotics tested, norfloxacin, which targets DNA replication, elicited the highest levels of eDNA release, thereby driving robust streamer formation. By contrast, colistin, which disrupts the bacterial membrane, induced lower yet detectable eDNA release, while tobramycin, acting on protein synthesis, exerted minimal effect. When these conditions were applied to a P. aeruginosa multidrug-resistant strain, the impact of norfloxacin on promoting lysis and eDNA release was even more pronounced. These effects were highly dependent on temperature and medium composition, with AU producing distinct susceptibility profiles compared to TB. Overall, this work highlights the critical role of microenvironment-specific factors in shaping biofilm architecture and treatment response, underscoring the need to refine therapeutic strategies for managing device-associated infections.I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/355899
URN:NBN:IT:HUNIMED-355899