Nanotechnology has rapidly evolved into a pervasive field that enables the manipulation of matter at atomic and nanometric scales. Within this context, carbon nanotechnology has gained considerable attention, largely due to the remarkable versatility of carbon. Recently, a new material was added to the family of the carbon-based nanomaterials: the carbon dots (CDs). CDs are zero-dimensional nanoparticles, typically with dimensions below 10 nm, composed of a carbonaceous core surrounded by functional surface groups. Their unique combination of tunable photophysical properties, high solubility, and chemical versatility has established CDs as exceedingly promising candidates for a broad spectrum of applications, spanning from (photo)catalysis to material science offering low-cost, metal-free solutions with promising efficiency. Moreover, their surface functionalities make them suitable building blocks for the assembly of complex structures with tailored properties. However, despite their tremendous potential, challenges remain in controlling the synthesis, purification, and characterization of CDs. The formation of molecular side-products during their synthesis, in fact, can cloudy the characterization of their intrinsic optical properties, emphasizing the need for robust purification strategies. Recently, the development of advanced, multi-technique characterization protocols has provided deeper insights into their structure-property relationships. Nevertheless, further refinements are necessary to fully unravel the complex structure of CDs. In this manuscript, the general introduction of the state-of-the-art and the open scientific questions that this thesis tries to answer, are outlined in Chapter 1. Subsequently, Chapter 2, describes the synthesis of nine nitrogen-doped CD batches obtained from citric acid and urea. This Chapter correlates the degree of graphitization of the CD core with their photocatalytic performance and highlights a new strategy for tuning the CD structure to improve the cost-effectiveness of photocatalysts. This work provides a practical approach for exploring how the structure of CDs can influence their photocatalytic behavior, opening avenues for their wider application in photocatalysis. Looking ahead, this approach could drive the development of a new generation of affordable photocatalysts with promising uses in synthetic chemistry, industry, and environmentally significant photochemical processes. In Chapter 3, the surface chemistry of CDs is also investigated. This Chapter shows how the redox and photoredox activity of CDs is directly governed by the density and accessibility of their surface amines, that not only serve as reducing agents, but also mediate supramolecular CD-substrate interactions, enabling efficient electron transfer. Together, these findings establish a framework for tailoring CD surface chemistry to achieve controlled electron transfer in redox and photoredox transformations, opening new opportunities across (nano)materials science, organic synthesis, and chemical biology. Finally, Chapter 4 investigates the use of CDs as versatile building blocks for the synthesis of nanohybrid nanostructures. In particular, the Chapter presents the design and fabrication of CD/polymer nanoconjugates for the assembly of colloidosomes with thermoresponsive properties, bridging nanomaterials chemistry with bottom-up synthetic biology. By combining the optoelectronic features of CDs with the dynamic responsiveness of polymers, these novel supramolecular systems aim to mimic cellular functions and provide innovative platforms for catalysis, artificial cell models, and smart nanomaterials.
La nanotecnologia si è rapidamente affermata come un campo di ricerca pervasivo, capace di manipolare la materia su scala atomica e nanometrica. Tra i materiali emergenti, le nanotecnologie basate sul carbonio hanno suscitato grande interesse per l’eccezionale versatilità di questo elemento. In tale ambito, una nuova classe di materiali, i carbon dots (CDs), si è aggiunta alla famiglia dei nanomateriali carboniosi. I CDs sono nanoparticelle zero-dimensionali (<10 nm) costituite da un nucleo carbonioso circondato da gruppi funzionali superficiali. La loro combinazione di proprietà fotofisiche modulabili, alta solubilità e versatilità chimica li rende candidati promettenti per molte applicazioni, dalla fotocatalisi alla scienza dei materiali, offrendo un’alternativa economica, priva di metalli e ad alta efficienza ai catalizzatori tradizionali. Inoltre, la presenza di gruppi funzionali li rende elementi costruttivi ideali per strutture complesse progettate ad hoc per specifiche funzioni. Nonostante l’enorme potenziale, permangono sfide legate al controllo della sintesi, purificazione e caratterizzazione dei CDs. La formazione di sottoprodotti molecolari può complicare l’analisi delle loro proprietà ottiche, richiedendo strategie di purificazione più efficaci. Le recenti tecniche di caratterizzazione avanzate hanno migliorato la comprensione della relazione struttura-proprietà, ma sono necessari ulteriori studi per chiarire i meccanismi fondamentali. In questo manoscritto, il Capitolo 1 offre un inquadramento generale dello stato dell’arte e delle principali questioni scientifiche affrontate in questa tesi. Il Capitolo 2 descrive la sintesi di nove campioni di CDs dopati con azoto, ottenuti da acido citrico e urea, e dimostra come il grado di grafitizzazione del nucleo influenzi le prestazioni fotocatalitiche. Lo studio propone una strategia per modulare la struttura dei CDs al fine di ottenere fotocatalizzatori più efficienti ed economici, fornendo un approccio pratico alla correlazione tra struttura e attività fotocatalitica, con potenziali applicazioni in chimica sintetica, industria e sistemi fotochimici avanzati. Il Capitolo 3 analizza la chimica superficiale dei CDs, mostrando che l’attività redox e fotoredox è governata dalla densità e accessibilità delle ammine superficiali, che agiscono sia come agenti riducenti sia come mediatori nelle interazioni supramolecolari CD-substrato. Queste interazioni facilitano il trasferimento elettronico, delineando un quadro concettuale per la progettazione mirata della chimica superficiale dei CDs e il controllo dei processi di trasferimento elettronico in trasformazioni redox e fotoredox, con nuove prospettive nella scienza dei nanomateriali, nella sintesi organica e nella biochimica. Infine, il Capitolo 4 esplora l’impiego dei CDs come elementi costitutivi per la sintesi di nanostrutture ibride CD/polimero. Viene presentato il design di nanoconiugati CD/polimero per l’assemblaggio di colloidosomi termoresponsivi, che uniscono la chimica dei nanomateriali alla biologia sintetica bottom-up. Combinando le proprietà optoelettroniche dei CDs con la versatilità dei polimeri, questi sistemi supramolecolari mirano a imitare funzioni cellulari e a fornire piattaforme innovative per la catalisi, la realizzazione di protocellule artificiali e di nanomateriali intelligenti.
Carbon dots as emergent (photo)catalytic systems
MORBIATO, LAURA
2026
Abstract
Nanotechnology has rapidly evolved into a pervasive field that enables the manipulation of matter at atomic and nanometric scales. Within this context, carbon nanotechnology has gained considerable attention, largely due to the remarkable versatility of carbon. Recently, a new material was added to the family of the carbon-based nanomaterials: the carbon dots (CDs). CDs are zero-dimensional nanoparticles, typically with dimensions below 10 nm, composed of a carbonaceous core surrounded by functional surface groups. Their unique combination of tunable photophysical properties, high solubility, and chemical versatility has established CDs as exceedingly promising candidates for a broad spectrum of applications, spanning from (photo)catalysis to material science offering low-cost, metal-free solutions with promising efficiency. Moreover, their surface functionalities make them suitable building blocks for the assembly of complex structures with tailored properties. However, despite their tremendous potential, challenges remain in controlling the synthesis, purification, and characterization of CDs. The formation of molecular side-products during their synthesis, in fact, can cloudy the characterization of their intrinsic optical properties, emphasizing the need for robust purification strategies. Recently, the development of advanced, multi-technique characterization protocols has provided deeper insights into their structure-property relationships. Nevertheless, further refinements are necessary to fully unravel the complex structure of CDs. In this manuscript, the general introduction of the state-of-the-art and the open scientific questions that this thesis tries to answer, are outlined in Chapter 1. Subsequently, Chapter 2, describes the synthesis of nine nitrogen-doped CD batches obtained from citric acid and urea. This Chapter correlates the degree of graphitization of the CD core with their photocatalytic performance and highlights a new strategy for tuning the CD structure to improve the cost-effectiveness of photocatalysts. This work provides a practical approach for exploring how the structure of CDs can influence their photocatalytic behavior, opening avenues for their wider application in photocatalysis. Looking ahead, this approach could drive the development of a new generation of affordable photocatalysts with promising uses in synthetic chemistry, industry, and environmentally significant photochemical processes. In Chapter 3, the surface chemistry of CDs is also investigated. This Chapter shows how the redox and photoredox activity of CDs is directly governed by the density and accessibility of their surface amines, that not only serve as reducing agents, but also mediate supramolecular CD-substrate interactions, enabling efficient electron transfer. Together, these findings establish a framework for tailoring CD surface chemistry to achieve controlled electron transfer in redox and photoredox transformations, opening new opportunities across (nano)materials science, organic synthesis, and chemical biology. Finally, Chapter 4 investigates the use of CDs as versatile building blocks for the synthesis of nanohybrid nanostructures. In particular, the Chapter presents the design and fabrication of CD/polymer nanoconjugates for the assembly of colloidosomes with thermoresponsive properties, bridging nanomaterials chemistry with bottom-up synthetic biology. By combining the optoelectronic features of CDs with the dynamic responsiveness of polymers, these novel supramolecular systems aim to mimic cellular functions and provide innovative platforms for catalysis, artificial cell models, and smart nanomaterials.| File | Dimensione | Formato | |
|---|---|---|---|
|
Laura Morbiato_thesis_final_revised.pdf
embargo fino al 26/01/2027
Licenza:
Tutti i diritti riservati
Dimensione
12.35 MB
Formato
Adobe PDF
|
12.35 MB | Adobe PDF | |
|
Laura Morbiato_thesis_final_revised_1.pdf
embargo fino al 26/01/2027
Licenza:
Tutti i diritti riservati
Dimensione
12.35 MB
Formato
Adobe PDF
|
12.35 MB | Adobe PDF | |
|
Laura Morbiato_thesis_final_revised_2.pdf
embargo fino al 26/01/2027
Licenza:
Tutti i diritti riservati
Dimensione
12.35 MB
Formato
Adobe PDF
|
12.35 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/356203
URN:NBN:IT:UNITS-356203