Carbon and gold nanostructures are two of the most iconic examples of nanotechnology. Their exceptional properties at nanoscale have been extensively investigated for decades. However, the potential of these tiny tools is not yet fully exploited. Among these, Carbon Nanodots (CNDs) exhibit fascinating properties. CNDs are defined as carbon-based nanoparticles smaller than 10 nm, and they stand out for strong photoluminescence, biocompatibility, versatile surface chemistry, and excellent solubility, making them highly promising for a wide range of applications. On the other hand, Gold Nanorods (Au NRs), thanks to their intriguing tunable optical features and versatile catalytic properties, play an integral role in various biomedical systems, nanophotonic devices, and catalysis. The work presented in this thesis aims to advance the state of the art in CND and Au NR research, opening to new possibilities. Additionally, the thesis is organized in three chapters: Chapter 1 provides a general introduction to the topics of this thesis, specifically related to carbon and gold nanotechnology. In Chapter 2, the issues about the synthesis and formation mechanism of CNDs are discussed. In fact, CND formation mechanisms remain poorly understood, hindering a controlled synthesis. Additionally, traditional preparation methods often suffer from low reproducibility, poor size control, and limited scalability due to irregular heat and mass transfer in reaction vessels. This project addresses these challenges in two ways. First, it investigates the molecular intermediates formed during CND synthesis from L-arginine (Arg) and ethylenediamine (EDA). Through chromatographic separation, nuclear magnetic resonance, and mass spectrometry, several crucial intermediates were isolated and structurally characterized, offering new mechanistic insights into CND formation. Specifically, the project investigates replacing microwave heating with infrared (IR) laser technology to generate rapid and uniform heating gradients, which may help overcome certain limitations of conventional CND synthesis. However, initial tests showed limitations due to insufficient heating time and temperature, constrained by boiling points and short residence times over the irradiation window. Chapter 3 presents preliminary findings on the use of chiral gold nanostructures in asymmetric heterogeneous catalysis. Recently, chiral-shaped gold nanorods (Au NRs) have been synthesized using inducers such as amino acids or chiral micellar solutions. The unique dissymmetric geometry of these nanomaterials holds potential for enabling asymmetric catalytic activity. However, a comprehensive understanding and practical application of colloidal asymmetric nanocatalysis remain limited. This study, therefore, aims to advance colloidal gold nanocatalysis for enantioselective organic synthesis. To achieve this, chiral gold nanorods were synthesized through chemically driven dissymmetric growth, followed by coating with platinum via a novel micelle-directed approach, resulting in Au@Pt nanorods featuring a uniform platinum shell. These chiral Au@Pt nanorods were found to be able to promote the hydrogenation of a prochiral substrate, methylphenyl glyoxylate, but no enantioselective catalytic activity was detected.
Le nanostrutture di carbonio e oro sono tra gli esempi più iconici di nanotecnologie. Le loro eccezionali proprietà su scala nanometrica sono state ampiamente studiate per decenni. Tuttavia, il potenziale di questi minuscoli strumenti non è ancora stato completamente sfruttato. Tra questi, i Carbon Nanodots (CNDs) presentano proprietà affascinanti. Definiti come nanoparticelle a base di carbonio di dimensioni inferiori a 10 nm, i CNDs si distinguono per la loro fotoluminescenza, biocompatibilità, ricca chimica di superficie ed elevata solubilità, caratteristiche che li rendono promettenti per un ampio spettro di applicazioni. D’altra parte, i nanorods d’oro (Au NRs), grazie alle loro interessanti proprietà ottiche e catalitiche, rivestono un ruolo fondamentale in diversi sistemi biomedici, dispositivi nanofotonici e catalizzatori. Il lavoro presentato in questa tesi mira a far avanzare lo stato dell’arte nella ricerca sui CNDs e sui Au NRs, aprendo a nuove possibilità. Inoltre, la tesi è organizzata in tre capitoli: Il Capitolo 1 si concentra su un’introduzione generale agli argomenti trattati nella tesi, relativi alle nanostrutture di carbonio ed oro. Nel Capitolo 2 si affrontano le problematiche legate alla sintesi e al meccanismo di formazione dei CND. Infatti, tali meccanismi risultano ancora poco compresi, ostacolando un controllo accurato del processo di sintesi. Inoltre, i metodi di sintesi tradizionali presentano spesso una bassa riproducibilità, un controllo dimensionale limitato e un difficile scale-up, a causa di trasferimenti irregolari di calore e massa nell’ambiente di reazione. Questo progetto affronta tali criticità attraverso due approcci distinti. Il primo consiste nell’indagine degli intermedi molecolari che si formano nei primi istanti della sintesi dei CND a partire da L-arginina ed etilendiammina. Mediante separazione cromatografica, risonanza magnetica nucleare e spettrometria di massa, sono stati isolati e caratterizzati diversi intermedi chiave, fornendo nuovi spunti sul meccanismo di formazione dei CND. Il secondo approccio prevede l’impiego della tecnologia a laser infrarosso (IR) in sostituzione del riscaldamento a microonde, con l’obiettivo di generare elevati gradienti termici, che potrebbero contribuire a superare alcune limitazioni della sintesi CND convenzionale. Tuttavia, i test iniziali hanno evidenziato alcune limitazioni dovute a tempi e temperature di riscaldamento insufficienti, limitati dal punto di ebollizione dei solventi e dai tempi di residenza ridotti all’interno della finestra di irraggiamento. Nel Capitolo 3 vengono presentati risultati preliminari sull’implementazione di nanostrutture d’oro chirali in catalisi eterogenea asimmetrica. Recentemente, i Au NRs con forme chirali sono stati sintetizzati utilizzando induttori chirali come aminoacidi o soluzioni micellari chirali. La geometria dissimmetrica di questi nanomateriali potrebbe conferire un’attività catalitica asimmetrica. Tuttavia, l’applicazione di questi sistemi in catalisi asimmetrica è ancora mancante in letteratura. Per questo motivo, il presente lavoro si concentra sullo sviluppo di nanocatalizzatori d’oro in soluzioni colloidali per la sintesi organica enantioselettiva. A tal fine, sono stati sintetizzati Au NRs chirali mediante crescita chemical-driven e successivamente rivestiti di platino attraverso un innovativo metodo micelle-directed, ottenendo nanorods d’oro chirali con uno strato di platino uniformemente distribuito. I nanomateriali ottenuti sono risultati capaci di promuovere la reazione di idrogenazione di un composto prochirale (methylphenyl glyoxylate) ma non è stata osservata alcuna attività catalitica asimmetrica.
Tiny Tools, Great Potential: Innovation in Carbon and Gold Nanostructures
GIULIANI, EMANUELE
2026
Abstract
Carbon and gold nanostructures are two of the most iconic examples of nanotechnology. Their exceptional properties at nanoscale have been extensively investigated for decades. However, the potential of these tiny tools is not yet fully exploited. Among these, Carbon Nanodots (CNDs) exhibit fascinating properties. CNDs are defined as carbon-based nanoparticles smaller than 10 nm, and they stand out for strong photoluminescence, biocompatibility, versatile surface chemistry, and excellent solubility, making them highly promising for a wide range of applications. On the other hand, Gold Nanorods (Au NRs), thanks to their intriguing tunable optical features and versatile catalytic properties, play an integral role in various biomedical systems, nanophotonic devices, and catalysis. The work presented in this thesis aims to advance the state of the art in CND and Au NR research, opening to new possibilities. Additionally, the thesis is organized in three chapters: Chapter 1 provides a general introduction to the topics of this thesis, specifically related to carbon and gold nanotechnology. In Chapter 2, the issues about the synthesis and formation mechanism of CNDs are discussed. In fact, CND formation mechanisms remain poorly understood, hindering a controlled synthesis. Additionally, traditional preparation methods often suffer from low reproducibility, poor size control, and limited scalability due to irregular heat and mass transfer in reaction vessels. This project addresses these challenges in two ways. First, it investigates the molecular intermediates formed during CND synthesis from L-arginine (Arg) and ethylenediamine (EDA). Through chromatographic separation, nuclear magnetic resonance, and mass spectrometry, several crucial intermediates were isolated and structurally characterized, offering new mechanistic insights into CND formation. Specifically, the project investigates replacing microwave heating with infrared (IR) laser technology to generate rapid and uniform heating gradients, which may help overcome certain limitations of conventional CND synthesis. However, initial tests showed limitations due to insufficient heating time and temperature, constrained by boiling points and short residence times over the irradiation window. Chapter 3 presents preliminary findings on the use of chiral gold nanostructures in asymmetric heterogeneous catalysis. Recently, chiral-shaped gold nanorods (Au NRs) have been synthesized using inducers such as amino acids or chiral micellar solutions. The unique dissymmetric geometry of these nanomaterials holds potential for enabling asymmetric catalytic activity. However, a comprehensive understanding and practical application of colloidal asymmetric nanocatalysis remain limited. This study, therefore, aims to advance colloidal gold nanocatalysis for enantioselective organic synthesis. To achieve this, chiral gold nanorods were synthesized through chemically driven dissymmetric growth, followed by coating with platinum via a novel micelle-directed approach, resulting in Au@Pt nanorods featuring a uniform platinum shell. These chiral Au@Pt nanorods were found to be able to promote the hydrogenation of a prochiral substrate, methylphenyl glyoxylate, but no enantioselective catalytic activity was detected.| File | Dimensione | Formato | |
|---|---|---|---|
|
PhD thesis-Emanuele Giuliani_REVISED.pdf
embargo fino al 26/01/2027
Licenza:
Tutti i diritti riservati
Dimensione
9.55 MB
Formato
Adobe PDF
|
9.55 MB | Adobe PDF | |
|
PhD thesis-Emanuele Giuliani_REVISED_1.pdf
embargo fino al 26/01/2027
Licenza:
Tutti i diritti riservati
Dimensione
9.55 MB
Formato
Adobe PDF
|
9.55 MB | Adobe PDF | |
|
PhD thesis-Emanuele Giuliani_REVISED_2.pdf
embargo fino al 26/01/2027
Licenza:
Tutti i diritti riservati
Dimensione
9.55 MB
Formato
Adobe PDF
|
9.55 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/356204
URN:NBN:IT:UNITS-356204