Nanomaterials represent a cornerstone of modern materials science, as theirdiverse properties enable functionalities unattainable in bulk form. In recentyears, assembling nanoparticles into mesoscopic structures has emerged asa powerful route to unlock an even wider range of collective and emergentbehaviours. When nanocrystals are brought into close proximity, their interactionsreshape the electronic and optical responses in ways that transcendthose of isolated particles. Progress in colloidal synthesis, purification, andassembly now enables near monodisperse nanoparticles to be organised intothree dimensional superstructures with crystalline, quasi crystalline, or amorphoussymmetry, often referred to as superparticles. Virtually any colloidalnanoparticle can serve as a building block for these artificial solids, includingchalcogenide and perovskite quantum dots or nanorods, plasmonic nanoparticles,magnetite nanocrystals, and ultrasmall noble metal nanoclusters. Theirassemblies display a plethora of intriguing behaviours including exciton delocalisationand band like transport, collective plasmonic resonances, ultra efficientsurface enhanced Raman scattering, superfluorescence, long range chargeor energy migration, and coupled photonic or excitonic modes, as well as aggregationinduced photoluminescence. While the mechanisms underpinningself assembly and the technological promise of these materials have both beenintensely studied, the systematic connection between structure and collectiveresponse remains far from fully established. Addressing these open questionsrequires approaches that combine high spatial and temporal resolution, capableof isolating the behaviour of individual superstructures while tracking interparticlecross-talk effects that evolve on sub nanosecond timescales.Within this framework, the aim of this thesis is to elucidate the photophysicsand photonics of three-dimensional superstructures assembled from differentclasses of semiconductor- and metal-based nanosystems. To this end, we combinediverse assembly strategies with structural characterisation, first-principlessimulations, and spectroscopic techniques spanning different spatial and temporalscales. Leveraging a broad palette of building blocks enables us to probe a correspondingly broad range of collective behaviours, while the synergybetween complementary experimental approaches provides a more completeunderstanding of their responses. Among the characterisation techniqueswe employ, a prominent role is played by ultrafast transient absorption microscopy,which combines high spatial and temporal resolution thereby allowingto unravel the photoinitiated dynamics of single superstructures at the subnanosecondtimescales. The results presented in this thesis advance the fundamentalunderstanding of the collective behaviour of artificial solids, therebyinforming future efforts to rationally design self-assembled materials with tailoredfunctionalities.
I nanomateriali rappresentano oggi un pilastro fondamentale della modernascienza dei materiali: l’ampio ventaglio di proprietà che essi manifestano consenteinfatti di accedere a funzionalità altrimenti precluse ai materiali in formabulk. Negli ultimi anni, l’auto-organizzazione (self-assembly) di nanoparticellein strutture mesoscopiche si è rivelata una strategia di eccezionale efficaciaper esplorare comportamenti collettivi ed emergenti. Quando i nanocristallivengono portati a stretto contatto, la loro mutua interazione ne rimodella lerisposte elettroniche e ottiche, permettendo di andare ben oltre le caratteristichetipiche delle unità isolate.Grazie ai significativi progressi compiuti nella sintesi colloidale, nei processidi purificazione e nelle tecniche di assemblaggio, è oggi possibile organizzarenanoparticelle quasi monodisperse in superstrutture (o superparticelle) tridimensionalidotate di simmetria cristallina, quasi-cristallina o amorfa. I nanomaterialicolloidali più disparati possono infatti fungere da unità fondamentaliper questi solidi artificiali: dai quantum dots ai nanorods semiconduttori, dallenanoparticelle plasmoniche ai nanocristalli magnetici e ai nanocluster di metallinobili. Le superstrutture così ottenute manifestano una pletora di fenomeniaffascinanti, che spaziano dalla delocalizzazione eccitonica alla migrazionedi carica, dalle risonanze plasmoniche collettive alla superfluorescenza, finoalla comparsa di modi ottici accoppiati e alla fotoluminescenza indotta da aggregazione(AIE).Sebbene i meccanismi di self-assembly e il potenziale tecnologico di tali sistemisiano stati ampiamente investigati, il legame sistematico tra l’architetturastrutturale e la risposta collettiva non è ancora stato pienamente elucidato. Lostudio di tali correlazioni struttura-proprietà richiede approcci d’indagine capacidi coniugare elevate risoluzioni spaziali e temporali, così da isolare ilcomportamento delle singole superstrutture e, simultaneamente, tracciare glieffetti di cross-talk tra le particelle, i quali evolvono tipicamente su scale temporaliinferiori al nanosecondo.In questo quadro, l’obiettivo della presente tesi è chiarire le proprietà fotofisiche e fotoniche di superstrutture tridimensionali assemblate a partire da diverseclassi di nanosistemi semiconduttori e metallici. A tal fine, differenti strategiedi assemblaggio sono state coniugate con un protocollo di analisi multidisciplinareche combina caratterizzazione strutturale, simulazioni numeriche daprincipi primi e, in particolare, tecniche spettroscopiche avanzate. L’impiegodi una vasta gamma di unità costitutive ha permesso di esplorare un altrettantoampio spettro di fenomeni collettivi, mentre la sinergia tra approcci sperimentalicomplementari ha garantito una comprensione esaustiva della loro rispostaottica. Tra le metodologie adottate, spicca la microscopia di assorbimentotransiente ultraveloce (ultrafast transient absorption microscopy): grazie allasua alta risoluzione spazio-temporale, tale tecnica ha consentito di distinguerele dinamiche fotoindotte all’interno delle singole superstrutture su scale subnanosecondo.I risultati presentati in questo lavoro gettano nuova luce sullafisica fondamentale dei solidi artificiali e contribuiscono a stabilire criteri guidagenerali per la progettazione razionale di materiali auto-assemblati con proprietàe funzionalità fisico-chimiche predeterminate.
Photophysics and Photonics of Self-Assembled Superstructures
Castronovo, PIETRO
2026
Abstract
Nanomaterials represent a cornerstone of modern materials science, as theirdiverse properties enable functionalities unattainable in bulk form. In recentyears, assembling nanoparticles into mesoscopic structures has emerged asa powerful route to unlock an even wider range of collective and emergentbehaviours. When nanocrystals are brought into close proximity, their interactionsreshape the electronic and optical responses in ways that transcendthose of isolated particles. Progress in colloidal synthesis, purification, andassembly now enables near monodisperse nanoparticles to be organised intothree dimensional superstructures with crystalline, quasi crystalline, or amorphoussymmetry, often referred to as superparticles. Virtually any colloidalnanoparticle can serve as a building block for these artificial solids, includingchalcogenide and perovskite quantum dots or nanorods, plasmonic nanoparticles,magnetite nanocrystals, and ultrasmall noble metal nanoclusters. Theirassemblies display a plethora of intriguing behaviours including exciton delocalisationand band like transport, collective plasmonic resonances, ultra efficientsurface enhanced Raman scattering, superfluorescence, long range chargeor energy migration, and coupled photonic or excitonic modes, as well as aggregationinduced photoluminescence. While the mechanisms underpinningself assembly and the technological promise of these materials have both beenintensely studied, the systematic connection between structure and collectiveresponse remains far from fully established. Addressing these open questionsrequires approaches that combine high spatial and temporal resolution, capableof isolating the behaviour of individual superstructures while tracking interparticlecross-talk effects that evolve on sub nanosecond timescales.Within this framework, the aim of this thesis is to elucidate the photophysicsand photonics of three-dimensional superstructures assembled from differentclasses of semiconductor- and metal-based nanosystems. To this end, we combinediverse assembly strategies with structural characterisation, first-principlessimulations, and spectroscopic techniques spanning different spatial and temporalscales. Leveraging a broad palette of building blocks enables us to probe a correspondingly broad range of collective behaviours, while the synergybetween complementary experimental approaches provides a more completeunderstanding of their responses. Among the characterisation techniqueswe employ, a prominent role is played by ultrafast transient absorption microscopy,which combines high spatial and temporal resolution thereby allowingto unravel the photoinitiated dynamics of single superstructures at the subnanosecondtimescales. The results presented in this thesis advance the fundamentalunderstanding of the collective behaviour of artificial solids, therebyinforming future efforts to rationally design self-assembled materials with tailoredfunctionalities.| File | Dimensione | Formato | |
|---|---|---|---|
|
comp_PhD_Thesis_Pietro_CASTRONOVO_final.pdf
accesso aperto
Licenza:
Tutti i diritti riservati
Dimensione
5.39 MB
Formato
Adobe PDF
|
5.39 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/356341
URN:NBN:IT:UNIPA-356341