The homeostasis of the vaginal microenvironment is finely regulated. The bacteria belonging to the genus Lactobacillus play a key role in retaining the homeostasis; in addition, their immunomodulatory and anti-inflammatory activity have been described in literature. When this balance breaks down, dysbiosis occurs and causes the onset of infections by microorganisms and viruses that normally behave as commensals. Candida albicans (C. albicans), can overgrow and trigger vulvovaginal candidiasis (VVC). The shifting from commensalism to pathogenicity is due to the capacity to undergo a dimorphic transition from yeast to hyphal morphology. In such form the fungus expresses several virulence factors, such as candidalysin (CL) and the hydrolytic enzymes secreted aspartyl proteases (SAP), and it promotes inflammation and damage to the vaginal mucosa; the latter are responsible of the clinical symptoms: itching, burning sensation, vaginal discharge and strangury. To date, the mechanisms driving host-microrganism and host-virus interactions in the context of the vaginal environment is incomplete. The increase of drug resistance, and the lack of knowledge on the pathogenetic mechanisms that lead to vulvovaginal infections, requires to establish novel therapeutic approaches and advanced in vitro models for the study of such diseases. For this reason, the experimental approach used for the present Ph.D. project includes the setting up of vaginal epithelial cells arranged in monolayers or multilayers (RVE) systems to be infected by microbes and viruses responsible of vaginal infections (specifically, the fungus C. albicans, the bacteria Gardnerella vaginalis and Escherichia coli and the Herpes simplex 2 virus). These models have been used to assess the beneficial effects of bioactive molecules and to analyse the molecular mechanisms used by the cells to respond to the infectious agents. In addition, an “untargeted” metabolomic approach has been employed to reveal the production of bioactive metabolites released by different species of Lactobacillus. The results indicate that: a) specific bacterial lysates can improve the host cells response against the pathogens; b) an in vitro RVE model employed in combination with artificial vaginal fluid has provided a tool that better resembles the human vaginal mucosa, and it is useful to study the interaction of the infected epithelial cells with microorganisms and viruses; c) C. albicans triggers a rapid activation of epithelial cells mitochondria, which is protective against several virulence traits of the fungus (release of candidalysin and hyphal formation); d) by using an “untargeted” metabolomic approach, significant differences in metabolites production by Lacticaseibacillus (L.) rhamnosus, Lactobacillus (L.) acidophilus, Lactiplantibacillus (L.) plantarum and Limosilactobacillus (L.) reuteri could be detected; specifically, inosine (a nucleoside with antioxidant, anti-inflammatory, antiinfective and neuroprotective properties) was found to be overproduced by L. rhamnosus. In conclusion, by using in vitro models of vaginal infections, this study has contributed to acquire data concerning the possible interactions between vaginal epithelial cells and microorganisms and viruses. Such results have been obtained by analysing the mechanisms underlying the cell responses to the different pathogens. In addition, the possible beneficial effects of novel bioactive molecules in the treatment of vaginal infections have been proposed. Finally, by this study it has been possible to highlight how different bacterial species are able to produce several metabolites with possible beneficial effects for the vaginal mucosa.
Il microambiente vaginale è finemente regolato per mantenere l'omeostasi. I batteri lattici del genere Lactobacillus svolgono un ruolo chiave nel preservare questa omeostasi ed è noto il loro effetto immunomodulante ed antinfiammatorio. L’alterazione di questo equilibrio porta a disbiosi, con conseguente insorgenza di infezioni sostenute da microrganismi e virus che possono anche far parte del microbiota vaginale. Per esempio, Candida albicans (C. albicans), un lievito commensale della mucosa vaginale, può proliferare eccessivamente e causare candidosi vulvovaginale (VVC). Il passaggio da commensale a patogeno di C. albicans nella VVC è legato alla sua transizione morfologica da lievito a ifa che, insieme alla produzione di fattori di virulenza come la candidalisina (CL) ed enzimi idrolitici come le proteasi aspartiche (SAP), promuove l’infiammazione e il danno della mucosa vaginale con sintomi caratteristici quali: prurito, bruciore, perdite vaginali e dolori alla minzione. Ad oggi, i meccanismi che regolano le interazioni ospite-microrganismo e virus nell’ambiente vaginale rimangono poco chiari. Alla luce dell'aumento della resistenza ai farmaci e della scarsa comprensione dei meccanismi patogenetici delle infezioni vulvovaginali, vi è un urgente bisogno di nuovi approcci terapeutici e di modelli in vitro avanzati per studiare queste patologie. Per questo, l'approccio sperimentale utilizzato per questo lavoro di dottorato ha incluso la messa a punto di sistemi di monostrato o multistrato (RVE) di cellule epiteliali vaginali, successivamente infettati con microrganismi e virus responsabili di infezioni vulvovaginali (in particolare C. albicans ma anche Gardnerella vaginalis, Escherichia coli e virus Herpes simplex di tipo 2). Questi modelli di infezione sono stati utilizzati per saggiare l’effetto benefico di molecole bioattive, nonché per analizzare i meccanismi molecolari di risposta ai microrganismi e virus dell’epitelio vaginale. Inoltre, è stato utilizzato un approccio di metabolomica “untargeted” per analizzare la produzione di possibili metaboliti bioattivi rilasciati da differenti specie di lattobacilli. I risultati ottenuti indicano che: a) specifici lisati batterici possono migliorare la risposta cellulare contro i patogeni; b) l’utilizzo di un modello RVE in vitro, in presenza di fluido vaginale artificiale, è un modello più rappresentativo della mucosa vaginale umana e si è rivelato utile per studiare l'interazione delle cellule epiteliali infettate con microrganismi e virus; c) C. albicans induce una rapida attivazione mitocondriale nelle cellule epiteliali vaginali, che lo utilizzano come meccanismo protettivo nei confronti di diversi fattori di virulenza del fungo (rilascio di candidalisina e formazione di ife); d) utilizzando un approccio di metabolomica “untargeted”, abbiamo rilevato differenze consistenti nei metaboliti prodotti da Lacticaseibacillus (L.) rhamnosus, Lactobacillus (L.) acidophilus, Lactiplantibacillus (L.) plantarum e Limosilactobacillus (L.) reuteri con una over-produzione di inosina, nucleoside con proprietà antiossidanti, antinfiammatorie, anti-infettive e neuroprotettive, da parte di L. rhamnosus. In conclusione, questo studio ha esplorato tramite modelli in vitro di infezione vaginale, le possibili interazioni tra cellule epiteliali vaginali, microrganismi e virus analizzando i meccanismi che mediano le risposte cellulari ai diversi patogeni microbici e virali; questo studio ha inoltre evidenziato il potenziale effetto benefico di nuove molecole bioattive nel trattamento delle infezioni vaginali e ha messo in luce come specie diverse di batteri lattici possano produrre diversi metaboliti con possibili effetti benefici per la salute della mucosa vaginale.
Studio delle interazioni ospite-microrganismo tramite modelli di infezione vaginale mono e polimicrobica in vitro e valutazione dell’effetto protettivo di nuove molecole bioattive
RICCHI, FRANCESCO
2026
Abstract
The homeostasis of the vaginal microenvironment is finely regulated. The bacteria belonging to the genus Lactobacillus play a key role in retaining the homeostasis; in addition, their immunomodulatory and anti-inflammatory activity have been described in literature. When this balance breaks down, dysbiosis occurs and causes the onset of infections by microorganisms and viruses that normally behave as commensals. Candida albicans (C. albicans), can overgrow and trigger vulvovaginal candidiasis (VVC). The shifting from commensalism to pathogenicity is due to the capacity to undergo a dimorphic transition from yeast to hyphal morphology. In such form the fungus expresses several virulence factors, such as candidalysin (CL) and the hydrolytic enzymes secreted aspartyl proteases (SAP), and it promotes inflammation and damage to the vaginal mucosa; the latter are responsible of the clinical symptoms: itching, burning sensation, vaginal discharge and strangury. To date, the mechanisms driving host-microrganism and host-virus interactions in the context of the vaginal environment is incomplete. The increase of drug resistance, and the lack of knowledge on the pathogenetic mechanisms that lead to vulvovaginal infections, requires to establish novel therapeutic approaches and advanced in vitro models for the study of such diseases. For this reason, the experimental approach used for the present Ph.D. project includes the setting up of vaginal epithelial cells arranged in monolayers or multilayers (RVE) systems to be infected by microbes and viruses responsible of vaginal infections (specifically, the fungus C. albicans, the bacteria Gardnerella vaginalis and Escherichia coli and the Herpes simplex 2 virus). These models have been used to assess the beneficial effects of bioactive molecules and to analyse the molecular mechanisms used by the cells to respond to the infectious agents. In addition, an “untargeted” metabolomic approach has been employed to reveal the production of bioactive metabolites released by different species of Lactobacillus. The results indicate that: a) specific bacterial lysates can improve the host cells response against the pathogens; b) an in vitro RVE model employed in combination with artificial vaginal fluid has provided a tool that better resembles the human vaginal mucosa, and it is useful to study the interaction of the infected epithelial cells with microorganisms and viruses; c) C. albicans triggers a rapid activation of epithelial cells mitochondria, which is protective against several virulence traits of the fungus (release of candidalysin and hyphal formation); d) by using an “untargeted” metabolomic approach, significant differences in metabolites production by Lacticaseibacillus (L.) rhamnosus, Lactobacillus (L.) acidophilus, Lactiplantibacillus (L.) plantarum and Limosilactobacillus (L.) reuteri could be detected; specifically, inosine (a nucleoside with antioxidant, anti-inflammatory, antiinfective and neuroprotective properties) was found to be overproduced by L. rhamnosus. In conclusion, by using in vitro models of vaginal infections, this study has contributed to acquire data concerning the possible interactions between vaginal epithelial cells and microorganisms and viruses. Such results have been obtained by analysing the mechanisms underlying the cell responses to the different pathogens. In addition, the possible beneficial effects of novel bioactive molecules in the treatment of vaginal infections have been proposed. Finally, by this study it has been possible to highlight how different bacterial species are able to produce several metabolites with possible beneficial effects for the vaginal mucosa.| File | Dimensione | Formato | |
|---|---|---|---|
|
Ricchi.pdf
accesso aperto
Licenza:
Tutti i diritti riservati
Dimensione
9.76 MB
Formato
Adobe PDF
|
9.76 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/356601
URN:NBN:IT:UNIMORE-356601