Carbon dots (CDs) are the latest member to join the large family of carbon-based nanomaterials and represent the central topic of this dissertation. This nanomaterial consists on quasi-spherical 0D nanoparticles with rich redox chemistry, wide light absorption and emission and high chemical and photo-stability. These favorable properties have increased the interest of the scientific community toward preparation and application of these nanoparticles in many applicative areas, ranging from biological to energy related applications. Chapter 1 provides a general overview of the state of the art of CDs. The structures and the relative properties of the four CDs typologies are discussed: graphene quantum dots (GQDs), carbon quantum dots (CQDs), carbon nanodots (CNDs) and carbon polymer dots (CPDs). Chapter 2 shows that chiral carbon carbon nanodots (sCNDs) can be readily prepared using hydrothermal microwave-assisted synthesis. These nanoparticles, with size around 3 nm, are highly soluble in water and display mirror-image profile both in the UV– Vis and in the infrared regions, as detected by electronic and vibrational circular dichroism, respectively. We proposed the presence of a chiral shell that is originated by cyclohexanediamine moieties incorporated on the dots. The proposed synthetic strategy opens up exciting opportunities for developing a variety of chiral nanodots. As representative examples, we report the preparation of CNDs with different absorption and emission properties by using different core precursor or doping molecules. This simple (and effective) synthetic methodology inspires us towards exciting opportunities, such as the use of these nanoparticles as templates for the formation of chiral chromophoric (porphyrin) assemblies in water. Finally, the effects that the chiral surface of CDs has on protein and cells is discussed. Chapter 3 reports the design, synthesis and characterization of CNDs doped with BODIPY dyes (BCNDs) showing the versatility of a multicomponent hydrothermal synthesis for preparing materials with predictable optical properties. Experimental evidences suggest that the BODIPY has been successfully incorporated in the nanodots through a carboxylic moiety on the meso-phenyl ring that likely reacts with the amines of Arg and EDA. The BCNDs are highly water soluble, possess amino groups on the surface that are amenable for further functionalization and present the typical green fluorescence emission of the BODIPY. The photoluminescence quantum yield (PLQY) of the dye affects the PLQY of the resulting nanoparticles demonstrating that structural modifications of the BODIPY precursor lead to nanodots with enhanced fluorescence emission. In addition, in the quest for novel ECL emitters, able to emit across a palette of colors and to be easily modified for bioconjugation reaction, we studied the ECL properties of these nanoparticles. Our findings show that BCNDs are good ECL emission that can be mainly modulated through post-synthetic surface modification, and the dye is likely incorporated in the core of the nanodots. The rational brought forward in this work could be extended for preparing multicolored CNDs by using different BODIPY precursors. Chapter 4 focuses on the use of nitrogen doped CNDs (NCNDs) as building blocks for the preparation of donor-acceptor covalent hybrids with zinc phthalocyanines (ZnPc). The amino groups from the NCNDs and the carboxylic acid from a ZnPc are combined through a carbodiimide coupling protocol. The study show the presence of two (or more) units of ZnPcs per nanoparticle and an in-depth photophysical investigation reveals the donor-acceptor properties of the hybrid materials.
I carbon dots (CDs) sono i nanomateriali a base di carbonio di piú recente scoperta e rappresentano l'argomento centrale di questa tesi. Questo nanomateriale è costituito da nanoparticelle 0D quasi sferiche con interessanti proprietà redox, ampio spettro di assorbimento ed emissione, e elevata stabilità chimica e fotochimica. Queste attraenti proprietà hanno fatto crescere l'interesse della comunità scientifica verso la preparazione e l’uso di queste nanoparticelle in molte aree applicative, dalle bio-applicazioni a utilizzi in campo energetico. Il capitolo 1 offre una panoramica generale dello stato dell'arte dei CDs. Sono discusse le strutture e proprietà delle quattro tipologie esistenti: graphene quantum dots (GQD), carbon quantum dots (CQD), carbon nanodots (CND) e carbon polymer dots (CPD). Il Capitolo 2 dimostra che CNDs chirali (sCND) possono essere prontamente preparati usando una sintesi multicomponente assistita da microonde. Queste nanoparticelle, con una dimensione di circa 3 nm, sono altamente solubili in acqua e mostrano dicroismo circolare speculare sia nella regione dell’ultravioletto-visibile che in quella infrarossa dello spettro elettromagnetico. La strategia sintesica proposta offre interessanti opportunità per lo sviluppo di diverse nanoparticelle di carbonio chirali. Come esempi rappresentativi, abbiamo riportato la preparazione di CNDs con diverse proprietà di assorbimento e fluorescenza attraverso l’impiego di diversi precursori responsabili della formazione del core o di molecole dopanti. Questa semplice (ed efficace) metodologia ci ha ispirato nell’esplorare nuove opportunità applicative, ad esempio l’impiego di queste nanoparticelle come templati per la formazione di aggregati cromoforici (porfirinici) chirali in acqua. Infine, vengono discussi gli effetti della superficie chirale dei CDs su proteine e cellule. Il capitolo 3 riporta la progettazione, la sintesi e la caratterizzazione dei CNDs dopati con fluorofori BODIPY (BCNDs). L’approccio sintetico riportato consiste in una sintesi idrotermica multicomponente che è risultata versatile per la preparazione di materiali con proprietà ottiche specifiche. Le evidenze sperimentali, emerse dallo studio, hanno suggerito che le molecole di fluoroforo sono state incorporate con successo nella struttura delle nanoparticelle attraverso la possibile reazione del gruppo carbossilico del BODIPY con le ammine di arginina ed etilen diammina. I BCNDs ottenuti sono risultati altamente solubili in acqua, possiedono gruppi amminici superficiali che possono essere ulteriormente funzionalizzati, e presentano la tipica emissione di fluorescenza verde del BODIPY. Studi fotofisici hanno rivelato che la resa quantica di fotoluminescenza (PLQY) del BODIPY influenza la PLQY delle nanoparticelle risultanti. Questo dato ha dimostrato che la modifica strutturale del BODIPY risulta nella produzione di nanoparticelle con una migliore emissione di fluorescenza. Inoltre, considerato il crescente interesse verso la produzione di nuovi emettitori per elettrochemiluminescenza (ECL), aventi emissioni variabili dello spettro del visibile e in grado di essere facilmente modificabili, abbiamo studiato anche le proprietà ECL di queste nanoparticelle. Il capitolo 4 si concentra sull'uso di CNDs dopati con azoto (NCNDs) come elementi costitutivi per la preparazione di ibridi covalenti donatore-accettore di con zinco ftalocianine (ZnPc). I gruppi amminici degli NCNDs sono stati fatti reagire con gli acidi carbossilici di un derivato di ZnPc tramite un protocollo di accoppiamento con carbodiimide. Lo studio dimostra la presenza di due (o più) unità di ZnPc per nanoparticella e le indagini fotofisico hanno dimostrato le proprietà donatoreaccettore del materiale ibrido.
Synthesis of Nitrogen Doped Carbon Nanodots and their Applications as Functional Materials
CACIOPPO, MICHELE
2020
Abstract
Carbon dots (CDs) are the latest member to join the large family of carbon-based nanomaterials and represent the central topic of this dissertation. This nanomaterial consists on quasi-spherical 0D nanoparticles with rich redox chemistry, wide light absorption and emission and high chemical and photo-stability. These favorable properties have increased the interest of the scientific community toward preparation and application of these nanoparticles in many applicative areas, ranging from biological to energy related applications. Chapter 1 provides a general overview of the state of the art of CDs. The structures and the relative properties of the four CDs typologies are discussed: graphene quantum dots (GQDs), carbon quantum dots (CQDs), carbon nanodots (CNDs) and carbon polymer dots (CPDs). Chapter 2 shows that chiral carbon carbon nanodots (sCNDs) can be readily prepared using hydrothermal microwave-assisted synthesis. These nanoparticles, with size around 3 nm, are highly soluble in water and display mirror-image profile both in the UV– Vis and in the infrared regions, as detected by electronic and vibrational circular dichroism, respectively. We proposed the presence of a chiral shell that is originated by cyclohexanediamine moieties incorporated on the dots. The proposed synthetic strategy opens up exciting opportunities for developing a variety of chiral nanodots. As representative examples, we report the preparation of CNDs with different absorption and emission properties by using different core precursor or doping molecules. This simple (and effective) synthetic methodology inspires us towards exciting opportunities, such as the use of these nanoparticles as templates for the formation of chiral chromophoric (porphyrin) assemblies in water. Finally, the effects that the chiral surface of CDs has on protein and cells is discussed. Chapter 3 reports the design, synthesis and characterization of CNDs doped with BODIPY dyes (BCNDs) showing the versatility of a multicomponent hydrothermal synthesis for preparing materials with predictable optical properties. Experimental evidences suggest that the BODIPY has been successfully incorporated in the nanodots through a carboxylic moiety on the meso-phenyl ring that likely reacts with the amines of Arg and EDA. The BCNDs are highly water soluble, possess amino groups on the surface that are amenable for further functionalization and present the typical green fluorescence emission of the BODIPY. The photoluminescence quantum yield (PLQY) of the dye affects the PLQY of the resulting nanoparticles demonstrating that structural modifications of the BODIPY precursor lead to nanodots with enhanced fluorescence emission. In addition, in the quest for novel ECL emitters, able to emit across a palette of colors and to be easily modified for bioconjugation reaction, we studied the ECL properties of these nanoparticles. Our findings show that BCNDs are good ECL emission that can be mainly modulated through post-synthetic surface modification, and the dye is likely incorporated in the core of the nanodots. The rational brought forward in this work could be extended for preparing multicolored CNDs by using different BODIPY precursors. Chapter 4 focuses on the use of nitrogen doped CNDs (NCNDs) as building blocks for the preparation of donor-acceptor covalent hybrids with zinc phthalocyanines (ZnPc). The amino groups from the NCNDs and the carboxylic acid from a ZnPc are combined through a carbodiimide coupling protocol. The study show the presence of two (or more) units of ZnPcs per nanoparticle and an in-depth photophysical investigation reveals the donor-acceptor properties of the hybrid materials.File | Dimensione | Formato | |
---|---|---|---|
Cacioppo Dissertation.pdf
Open Access dal 11/03/2021
Dimensione
7.39 MB
Formato
Adobe PDF
|
7.39 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/62555
URN:NBN:IT:UNITS-62555