Nanomaterial’s properties can be exploited for diagnostic and medical purposes or combined and fine-tuned to obtain multimodal nanoplatforms available for theranostics. For instance, independently from the specific nanomedicine goal, these nanomaterials will immediately contact the organism immune cells, as body’s first defensive barrier. Therefore, a critical step for future translational applications is represented by the assessment of nanomaterial’s impact on the immune system. In this view, the nanoimmunity-by-design concept is the leitmotiv of the Ph.D. project, it consists in the characterization of graphene and other nanomaterials not only from a chemical-physical point of view but also based on the effects that can occur towards the immune system. To pursue this goal, a new experimental model based on human primary immune cell populations, in particular on red blood cells (RBCs) and peripheral blood mononuclear cells (PBMCs) that can be adopted for the immune assessment of a large number of nanomaterials, was developed. To achieve this purpose, the Ph.D. project focused on the immunological characterization of some of the main promising nanomaterials for biomedical applications: carbon nanodots, ultrasmall silica nanoparticles, graphene-oxide-based hydrogels, titanium-based transition metal carbides, and polystyrene nanoparticles, adopting single- cell level techniques (i.e. flow cytometry and single-cell mass cytometry)
Nanomaterial’s properties can be exploited for diagnostic and medical purposes or combined and fine-tuned to obtain multimodal nanoplatforms available for theranostics. For instance, independently from the specific nanomedicine goal, these nanomaterials will immediately contact the organism immune cells, as body’s first defensive barrier. Therefore, a critical step for future translational applications is represented by the assessment of nanomaterial’s impact on the immune system. In this view, the nanoimmunity-by-design concept is the leitmotiv of the Ph.D. project, it consists in the characterization of graphene and other nanomaterials not only from a chemical-physical point of view but also based on the effects that can occur towards the immune system. To pursue this goal, a new experimental model based on human primary immune cell populations, in particular on red blood cells (RBCs) and peripheral blood mononuclear cells (PBMCs) that can be adopted for the immune assessment of a large number of nanomaterials, was developed. To achieve this purpose, the Ph.D. project focused on the immunological characterization of some of the main promising nanomaterials for biomedical applications: carbon nanodots, ultrasmall silica nanoparticles, graphene-oxide-based hydrogels, titanium-based transition metal carbides, and polystyrene nanoparticles, adopting single- cell level techniques (i.e. flow cytometry and single-cell mass cytometry)
IMMUNOCOMPATIBILITY AND BIOMEDICAL APPLICATIONS OF NEW NANOMATERIALS
GAZZI, ARIANNA
2022
Abstract
Nanomaterial’s properties can be exploited for diagnostic and medical purposes or combined and fine-tuned to obtain multimodal nanoplatforms available for theranostics. For instance, independently from the specific nanomedicine goal, these nanomaterials will immediately contact the organism immune cells, as body’s first defensive barrier. Therefore, a critical step for future translational applications is represented by the assessment of nanomaterial’s impact on the immune system. In this view, the nanoimmunity-by-design concept is the leitmotiv of the Ph.D. project, it consists in the characterization of graphene and other nanomaterials not only from a chemical-physical point of view but also based on the effects that can occur towards the immune system. To pursue this goal, a new experimental model based on human primary immune cell populations, in particular on red blood cells (RBCs) and peripheral blood mononuclear cells (PBMCs) that can be adopted for the immune assessment of a large number of nanomaterials, was developed. To achieve this purpose, the Ph.D. project focused on the immunological characterization of some of the main promising nanomaterials for biomedical applications: carbon nanodots, ultrasmall silica nanoparticles, graphene-oxide-based hydrogels, titanium-based transition metal carbides, and polystyrene nanoparticles, adopting single- cell level techniques (i.e. flow cytometry and single-cell mass cytometry)File | Dimensione | Formato | |
---|---|---|---|
Tesi PhD Arianna GAZZI 25.pdf
accesso aperto
Dimensione
18.77 MB
Formato
Adobe PDF
|
18.77 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/62828
URN:NBN:IT:UNITS-62828