The technological advances over the last years are driving research towards alternative ways to produce materials with reduced cost and enhanced properties. These newly synthesised materials with various potential applications are referred to as functional materials. In particular, smart materials change their properties in response to a certain stimulus (e.g., chemical, physical or mechanical), thus enabling new potential applications. In literature, there is a wide variety of functional materials, such as carbon nanomaterials, soft materials (i.e. gels, liquid crystals, ionic liquids), and, generally, supramolecular materials. The possibility of fine-tuning the properties of different materials by combing them together is very attractive. This approach can lead to novel composites or even hybrids, which display new properties, thus extending the range of possible applications. This Ph.D. thesis focuses on the synthesis of innovative functional materials based on supramolecular peptide gels or carbon nanotubes (CNTs) combined with metal organic cages (MOCs). In particular, Chapter 2 describes the synthesis on new MOCs having pendant peptides as peripherical ligands. The peptides chosen for this purpose were heterochiral tripeptides PABA-L-Phe-D-Xaa-L-Phe-NH2 (Xaa = Ala, Val, Leu, Ile) derivatised at the N-terminus with a p-amino benzoyl unit and amidated at the C-terminus. All four peptides were able to gel on their own. The peptides were self-assembled with different aldehydes and metal ions to obtain different MOCs. The gelling ability of the MOCs was studied and it was rationalized both from a theoretical (Molecular Dynamics) and experimental point of view (UV Resonance Raman Spectroscopy). Chapter 3 investigates the self-assembly of MOCs containing pendant peptides based on another type of interaction. In this case the tripeptides contain sulfur on their sidechains. The gelation of these MOCs was induced by the formation of coordinative bond between the sulfur unit and other metals ions (i.e., Ag+, Zn2+, Hg2+). This gelation in the presence of heavy metals holds promise for the removal of toxic metal ions from the environment. Chapter 4 describes the first example of functionalisation of CNTs with MOCs. The affinity of the MOC for different CNT types was studied through thermogravimetric analysis (TGA). The MOC employed in this study was able to transfer between aqueous and organic solvents by counter-anion exchange. The MOC binding onto the CNTs enabled their phase transfer as well, upon ion exchange. This phenomenon was exploited to test CNT sorting by phase extraction depending on their diameter. In conclusion, this work identified new ways to combine supramolecular materials with nanostructures, offering new designs to hierarchically co-assemble tripeptides, aldehydes, and metal ions into gelling MOCs, as well as providing the first example of MOC binding onto CNTs to transfer them across phases for sorting. Further developments in these areas could enable advances in separation, sensing or catalysis.

L’enorme sviluppo tecnologico degli ultimi anni ha guidato la ricerca verso strade alternative per la produzione di materiali a basso costo e con proprietà sempre migliori. Questi nuovi materiali con diverse potenziali applicazioni sono comunemente denominati materiali funzionali. In particolare, questi materiali smart sono in grado di cambiare le loro proprietà in risposta a diversi stimoli (ad esempio chimici, fisici o meccanici). In letteratura è riportata una grande varietà di questi materiali, come i materiali carboniosi, i materiali “soft” (ad esempio gel, cristalli liquidi, liquidi ionici), o in generale materiali supramoleculari. La possibilità di regolare in modo fine le loro proprietà, grazie alla combinazione di diversi materiali, è estremamente attrattiva. Questo approccio può portare a nuove materiali compositi o ibridi, con nuove proprietà in modo da estendere la gamma delle diverse possibili applicazioni. In questo progetto di dottorato si sono sintetizzati diversi materiali funzionali a base di gel di peptidi supramolecolari o nanotubi di carbonio (CNTs), combinati con delle gabbie supramoleculari (MOCs). Nel Capitolo 2, in particolare, viene descritta la sintesi di nuove gabbie aventi dei peptidi come leganti periferici. I peptidi scelti per questo scopo sono tripeptidi eterochirali PABA-L-Phe-D-Xaa-L-Phe-NH2 (Xaa = Ala, Val, Leu, Ile) derivatizzati al N-terminale con un gruppo p-amino benzoico e amidati al C-terminale. Tutti i peptidi sono in grado di assemblare in acetonitrile a diverse concentrazioni. L’assemblaggio dei peptidi, con diverse aldeidi e ioni metallici ha portato alla formazione di diverse gabbie supramoleculari. L’abilità di formare gel delle gabbie è stata studiata e razionalizzata sia da un punto di vista teorico (Dinamica Molecolare) e sperimentale (Spettroscopia UV Raman Risonante). Il Capitolo 3 si focalizza sullo studio dell’auto-assemblaggio di gabbie simili a quelle del precedente capitolo, ma il cui auto-assemblaggio si basa un altro tipo di interazione. I peptidi utilizzati contengono degli atomi di zolfo sulle catene alterali degli amino acidi. La capacità delle gabbie di gelare è indotta dalla formazione di un legame di coordinazione tra lo zolfo e altri ioni metallici (Ag+, Zn2+, Hg2+), aggiunti in soluzione. La capacità di formare gel in presenza di metalli pesanti può essere estremamente promettente per la rimozione di metalli tossici dall’ambiente. Nel Capitolo 4 viene riportato il primo esempio di funzionalizzazione di CNTs con le MOCs. Si è inizialmente studiata l’affinità delle MOC verso diverse tipologie di CNTs mediante analisi termogravimetrica. La gabbia utilizzata nello studio ha inoltre la capacità di passare da un solvente acquoso ad uno organico grazie al cambio di contro ione. Questa abilità è stata utilizzata per testare la separazione di CNTs con diversi diametri mediante estrazione di fase. Ulteriori sviluppi in quest’area potrebbero portare ad enormi avanzamenti nel campo della separazione, della sensoristica e della catalisi.

Combined Supra- & Nano-Architectures for Functional Materials

ADORINNI, SIMONE
2024

Abstract

The technological advances over the last years are driving research towards alternative ways to produce materials with reduced cost and enhanced properties. These newly synthesised materials with various potential applications are referred to as functional materials. In particular, smart materials change their properties in response to a certain stimulus (e.g., chemical, physical or mechanical), thus enabling new potential applications. In literature, there is a wide variety of functional materials, such as carbon nanomaterials, soft materials (i.e. gels, liquid crystals, ionic liquids), and, generally, supramolecular materials. The possibility of fine-tuning the properties of different materials by combing them together is very attractive. This approach can lead to novel composites or even hybrids, which display new properties, thus extending the range of possible applications. This Ph.D. thesis focuses on the synthesis of innovative functional materials based on supramolecular peptide gels or carbon nanotubes (CNTs) combined with metal organic cages (MOCs). In particular, Chapter 2 describes the synthesis on new MOCs having pendant peptides as peripherical ligands. The peptides chosen for this purpose were heterochiral tripeptides PABA-L-Phe-D-Xaa-L-Phe-NH2 (Xaa = Ala, Val, Leu, Ile) derivatised at the N-terminus with a p-amino benzoyl unit and amidated at the C-terminus. All four peptides were able to gel on their own. The peptides were self-assembled with different aldehydes and metal ions to obtain different MOCs. The gelling ability of the MOCs was studied and it was rationalized both from a theoretical (Molecular Dynamics) and experimental point of view (UV Resonance Raman Spectroscopy). Chapter 3 investigates the self-assembly of MOCs containing pendant peptides based on another type of interaction. In this case the tripeptides contain sulfur on their sidechains. The gelation of these MOCs was induced by the formation of coordinative bond between the sulfur unit and other metals ions (i.e., Ag+, Zn2+, Hg2+). This gelation in the presence of heavy metals holds promise for the removal of toxic metal ions from the environment. Chapter 4 describes the first example of functionalisation of CNTs with MOCs. The affinity of the MOC for different CNT types was studied through thermogravimetric analysis (TGA). The MOC employed in this study was able to transfer between aqueous and organic solvents by counter-anion exchange. The MOC binding onto the CNTs enabled their phase transfer as well, upon ion exchange. This phenomenon was exploited to test CNT sorting by phase extraction depending on their diameter. In conclusion, this work identified new ways to combine supramolecular materials with nanostructures, offering new designs to hierarchically co-assemble tripeptides, aldehydes, and metal ions into gelling MOCs, as well as providing the first example of MOC binding onto CNTs to transfer them across phases for sorting. Further developments in these areas could enable advances in separation, sensing or catalysis.
1-mar-2024
Inglese
L’enorme sviluppo tecnologico degli ultimi anni ha guidato la ricerca verso strade alternative per la produzione di materiali a basso costo e con proprietà sempre migliori. Questi nuovi materiali con diverse potenziali applicazioni sono comunemente denominati materiali funzionali. In particolare, questi materiali smart sono in grado di cambiare le loro proprietà in risposta a diversi stimoli (ad esempio chimici, fisici o meccanici). In letteratura è riportata una grande varietà di questi materiali, come i materiali carboniosi, i materiali “soft” (ad esempio gel, cristalli liquidi, liquidi ionici), o in generale materiali supramoleculari. La possibilità di regolare in modo fine le loro proprietà, grazie alla combinazione di diversi materiali, è estremamente attrattiva. Questo approccio può portare a nuove materiali compositi o ibridi, con nuove proprietà in modo da estendere la gamma delle diverse possibili applicazioni. In questo progetto di dottorato si sono sintetizzati diversi materiali funzionali a base di gel di peptidi supramolecolari o nanotubi di carbonio (CNTs), combinati con delle gabbie supramoleculari (MOCs). Nel Capitolo 2, in particolare, viene descritta la sintesi di nuove gabbie aventi dei peptidi come leganti periferici. I peptidi scelti per questo scopo sono tripeptidi eterochirali PABA-L-Phe-D-Xaa-L-Phe-NH2 (Xaa = Ala, Val, Leu, Ile) derivatizzati al N-terminale con un gruppo p-amino benzoico e amidati al C-terminale. Tutti i peptidi sono in grado di assemblare in acetonitrile a diverse concentrazioni. L’assemblaggio dei peptidi, con diverse aldeidi e ioni metallici ha portato alla formazione di diverse gabbie supramoleculari. L’abilità di formare gel delle gabbie è stata studiata e razionalizzata sia da un punto di vista teorico (Dinamica Molecolare) e sperimentale (Spettroscopia UV Raman Risonante). Il Capitolo 3 si focalizza sullo studio dell’auto-assemblaggio di gabbie simili a quelle del precedente capitolo, ma il cui auto-assemblaggio si basa un altro tipo di interazione. I peptidi utilizzati contengono degli atomi di zolfo sulle catene alterali degli amino acidi. La capacità delle gabbie di gelare è indotta dalla formazione di un legame di coordinazione tra lo zolfo e altri ioni metallici (Ag+, Zn2+, Hg2+), aggiunti in soluzione. La capacità di formare gel in presenza di metalli pesanti può essere estremamente promettente per la rimozione di metalli tossici dall’ambiente. Nel Capitolo 4 viene riportato il primo esempio di funzionalizzazione di CNTs con le MOCs. Si è inizialmente studiata l’affinità delle MOC verso diverse tipologie di CNTs mediante analisi termogravimetrica. La gabbia utilizzata nello studio ha inoltre la capacità di passare da un solvente acquoso ad uno organico grazie al cambio di contro ione. Questa abilità è stata utilizzata per testare la separazione di CNTs con diversi diametri mediante estrazione di fase. Ulteriori sviluppi in quest’area potrebbero portare ad enormi avanzamenti nel campo della separazione, della sensoristica e della catalisi.
Peptides; CNTs; MOCs; Gels; Materials
MARCHESAN, SILVIA
Università degli Studi di Trieste
File in questo prodotto:
File Dimensione Formato  
TesiPhD_AdorinniSimone.pdf

embargo fino al 01/03/2025

Dimensione 11.87 MB
Formato Adobe PDF
11.87 MB Adobe PDF

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/63237
Il codice NBN di questa tesi è URN:NBN:IT:UNITS-63237