This thesis is primarily devoted to the study of analytic and geometric properties of metric measure spaces with a Ricci curvature bounded from below. The first result concerns the study of how a hypothesis on the Hodge cohomology affects the rigidity of a metric measure space with non negative Ricci curvature and finite dimension: we prove that if the dimension of the first cohomology group of a RCD∗(0,N) space is N, then the space is a flat torus. This generalizes a classical result in Riemannian geometry due to Bochner to the non-smooth setting of RCD spaces. The second result provides a direct proof of the strong maximum principle on finite dimen- sional RCD spaces mainly based on the Laplacian comparison of the squared distance.
Cohomology and other analytical aspects of RCD spaces
Rigoni, Chiara
2017
Abstract
This thesis is primarily devoted to the study of analytic and geometric properties of metric measure spaces with a Ricci curvature bounded from below. The first result concerns the study of how a hypothesis on the Hodge cohomology affects the rigidity of a metric measure space with non negative Ricci curvature and finite dimension: we prove that if the dimension of the first cohomology group of a RCD∗(0,N) space is N, then the space is a flat torus. This generalizes a classical result in Riemannian geometry due to Bochner to the non-smooth setting of RCD spaces. The second result provides a direct proof of the strong maximum principle on finite dimen- sional RCD spaces mainly based on the Laplacian comparison of the squared distance.File | Dimensione | Formato | |
---|---|---|---|
PhD_Thesis_Chiara_Rigoni.pdf
accesso aperto
Dimensione
2.63 MB
Formato
Adobe PDF
|
2.63 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/64754
URN:NBN:IT:SISSA-64754