This thesis presents results from general relativistic numerical computations of primordial black-hole formation during the radiation-dominated era of the universe. Growing-mode perturbations are specified within the linear regime and their subsequent evolution is followed as they become nonlinear. We use a spherically symmetric Lagrangian code and study both super-critical perturbations, which go on to produce black holes, and sub-critical perturbations, for which the overdensity eventually disperses into the background medium. For super-critical perturbations, we revisit the results of previous work concerning scaling-laws, noting that the threshold amplitude for a perturbation to lead to black-hole formation is substantially reduced when the initial conditions are taken to represent purely growing modes. For sub-critical cases, where an initial collapse is followed by a subsequent re-expansion, strong compressions and rarefactions are seen for perturbation amplitudes near to the threshold. We have also investigated the effect of including a significant component of vacuum energy and have calculated the resulting changes in the threshold and in the slope of the scaling law. The specification of the growing-mode perturbations in the above work is approximate and in the later part of the thesis, we introduce a more sophisticated and elegant formulation in terms of curvature perturbations. This allows a direct connection to be made with the spectrum of perturbations coming from inflation and also, using this, we find that there is no longer evidence of shock production in connection with primordial black hole formation. Introducing adaptive mesh refinement into our code, we are able to follow black hole formation nearer to the critical limit and find evidence suggesting that scaling laws may continue down to very small n1asses, in contrast with previous suggestions in the literature.
Formation of primordial black holes
Musco, Ilia
2006
Abstract
This thesis presents results from general relativistic numerical computations of primordial black-hole formation during the radiation-dominated era of the universe. Growing-mode perturbations are specified within the linear regime and their subsequent evolution is followed as they become nonlinear. We use a spherically symmetric Lagrangian code and study both super-critical perturbations, which go on to produce black holes, and sub-critical perturbations, for which the overdensity eventually disperses into the background medium. For super-critical perturbations, we revisit the results of previous work concerning scaling-laws, noting that the threshold amplitude for a perturbation to lead to black-hole formation is substantially reduced when the initial conditions are taken to represent purely growing modes. For sub-critical cases, where an initial collapse is followed by a subsequent re-expansion, strong compressions and rarefactions are seen for perturbation amplitudes near to the threshold. We have also investigated the effect of including a significant component of vacuum energy and have calculated the resulting changes in the threshold and in the slope of the scaling law. The specification of the growing-mode perturbations in the above work is approximate and in the later part of the thesis, we introduce a more sophisticated and elegant formulation in terms of curvature perturbations. This allows a direct connection to be made with the spectrum of perturbations coming from inflation and also, using this, we find that there is no longer evidence of shock production in connection with primordial black hole formation. Introducing adaptive mesh refinement into our code, we are able to follow black hole formation nearer to the critical limit and find evidence suggesting that scaling laws may continue down to very small n1asses, in contrast with previous suggestions in the literature.File | Dimensione | Formato | |
---|---|---|---|
1963_5294_PhD_Musco_Ilia.pdf
accesso aperto
Dimensione
9.85 MB
Formato
Adobe PDF
|
9.85 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/66325
URN:NBN:IT:SISSA-66325