Let I be an ideal of a Noetherian local ring R. We study how properties of the ideal change under small perturbations, that is, when I is replaced by an ideal J which is the same as I modulo a large power of the maximal ideal. In particular, assuming that R/J has the same Hilbert function as R/I, we show that the Betti numbers of R/J coincide with those of R/I. We also compare the local cohomology modules of R/J with those of R/I.

Perturbations of ideals

LOPES DUARTE, LUIS PEDRO
2023

Abstract

Let I be an ideal of a Noetherian local ring R. We study how properties of the ideal change under small perturbations, that is, when I is replaced by an ideal J which is the same as I modulo a large power of the maximal ideal. In particular, assuming that R/J has the same Hilbert function as R/I, we show that the Betti numbers of R/J coincide with those of R/I. We also compare the local cohomology modules of R/J with those of R/I.
1-feb-2023
Inglese
Perturbation, Hilbert function, Betti numbers, Local cohomology
DE STEFANI, ALESSANDRO
VIGNI, STEFANO
Università degli studi di Genova
File in questo prodotto:
File Dimensione Formato  
phdunige_4772154.pdf

accesso aperto

Dimensione 741.78 kB
Formato Adobe PDF
741.78 kB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/69220
Il codice NBN di questa tesi è URN:NBN:IT:UNIGE-69220