ABSTRACT In the musculoskeletal system, tendons and ligaments play an important role in ensuring mobility and stability. These tissues are primarily composed of collagen and present a highly fibrous structure. Highlighting the microstructure components of ligaments and tendons in three-dimensional (3D) images is crucial for extracting meaningful information impacting basic science and orthopaedic applications. In particular, the mechanical properties of the fibrous microstructures are strongly influenced by their volume fraction, orientation, and diameter. However, determining the 3D fibre orientation and diameter is challenging. In this picture, this thesis aimed at integrating microcomputed tomography (microCT) and image processing approach to identify and enhance microstructural information about biological soft fibrous tissues, including volume and orientation. The overall procedure was first applied on human hamstring tendon and bovine collateral ligament samples. In a first phase specific sample preparations – including either a chemical dehydration, or by 2% of phosphotungstic acid (PTA) in water (H2O) or in 70% ethanol (EtOH) solution – were tested to enhance image contrast of these specific soft tissues. Further, using the scanned data, a novel image processing technique based on 3D Hessian multiscale filter for highlighting fibrous structures was developed to obtain quantitative fibre information. Interestingly, for any strategy of tendon/ligament sample preparation, the proposed approach was adequate for detecting and characterizing fascicle features. The test results showed the fibre arrangement strongly aligned along the main longitudinal direction in the human hamstring tendon more than fibres on the bovine collateral ligament. Moreover, this technique was further applied in order to determine how the human Anterior Cruciate Ligament (ACL) responds to uniaxial loads with respect to increasing values of strain, considering both a healthy tissue and a one under pathological conditions, i.e., acquired from a patient with osteoarthritis. Also in these cases, the integrated approach was valuable and reliable in identifying orientation and size of present fascicles and, thus, through a structural mechanical model - based on specific constitutive law - to estimate the elastic modulus of these tissues. In fact, stress-strain curves were estimated, obtaining a value of elastic modulus of 60.8 MPa and 7.7 MPa for the healthy and pathological ACLs, respectively. In conclusion, a novel contrast enhancement microCT protocol was designed and preliminarily validated for the microstructural analysis of biological soft fibrous tissues. In a peculiar application to ACL, the information obtained with the protocol was used to implement a mechanical model of fibrous tissues, thus estimating the biomechanical behaviour of the healthy and pathological tissues.
Nel sistema muscolo-scheletrico, tendini e legamenti svolgono un ruolo importante al fine di garantire mobilità e stabilità. Questi tessuti sono composti principalmente da collagene e presentano una struttura altamente fibrosa. Evidenziare i componenti della microstruttura di legamenti e tendini in immagini tridimensionali (3D) è di fondamentale importanza per estrarre informazioni significative che posso anvere ripercussioni sulla scienza di base e sulle applicazioni ortopediche. In particolare, le proprietà meccaniche delle microstrutture fibrose sono fortemente influenzate da alcune caratteristiche geometriche, come la volume fraction, l’orientamento e il diametro; tuttavia, determinare l'orientamento e il diametro della fibra 3D è impegnativo. In questa prospettiva, questa tesi mirava ad unire tomografia microcomputerizzata (microCT) ed elaborazione delle immagini in un approccio integrato al fine di identificare e migliorare le informazioni microstrutturali sui tessuti biologici fibrosi, includendo i dati di volume e orientamento. La procedura complessiva è stata applicata per la prima volta su campioni di tendine del ginocchio umano e su legamento collaterale bovino. In una prima fase, sono state testate preparazioni specifiche del campione, inclusa una disidratazione chimica o soluzioni di acido fosfotungstico (PTA) al 2 % in acqua (H2O) o in soluzione di etanolo al 70% (EtOH), così da migliorare il contrasto dell'immagine di questi specifici tessuti. Inoltre, utilizzando i dati scansionati, è stata sviluppata una nuova tecnica di elaborazione delle immagini basata sul filtro 3D hessiano multiscala per evidenziare le strutture fibrose ed ottenere informazioni quantitative sulle fibre. È interessante notare che, per qualsiasi strategia di preparazione del campione di tendini/legamenti, l'approccio proposto è risultato adeguato per rilevare e caratterizzare le proprietà del fascicolo. I risultati del test hanno mostrato che la disposizione delle fibre è fortemente allineata lungo la direzione longitudinale principale nel tendine del tendine, più delle fibre del legamento collaterale bovino. Inoltre, questa tecnica è stata ulteriormente applicata al fine di determinare come il Legamento Crociato Anteriore (LCA) umano risponda a carichi uniassiali rispetto a valori crescenti di deformazione, considerando sia un tessuto sano che uno in condizioni patologiche, cioè acquisito da un paziente con l'artrosi. Anche in questi casi, l'approccio integrato si è rivelato valido ed affidabile nell'individuare orientamento e dimensione dei fascicoli presenti e, quindi, attraverso un modello meccanico strutturale - basato su specifiche leggi costitutive - nello stimare il modulo elastico di questi tessuti. Sono state infatti stimate le curve sforzo-deformazione, ottenendo un valore di modulo elastico di 60.8 MPa e 7.7 MPa rispettivamente per il LCA sano e patologico. In conclusione, è stato progettato e validato in via preliminare un nuovo protocollo microCT per il miglioramento del contrasto dedicato all'analisi microstrutturale dei tessuti molli biologici con caratteristiche fibrose. In una peculiare applicazione al LCA, le informazioni ottenute con il protocollo sono state utilizzate per implementare un modello meccanico dei tessuti fibrosi, stimando così il comportamento biomeccanico dei tessuti sani e patologici.
Contrast-enhanced micro-computed tomography and image processing integrated approach for microstructural analysis of biological soft fibrous tissues
BUSHARA, FATEHIA BUSHARA GARMA
2023
Abstract
ABSTRACT In the musculoskeletal system, tendons and ligaments play an important role in ensuring mobility and stability. These tissues are primarily composed of collagen and present a highly fibrous structure. Highlighting the microstructure components of ligaments and tendons in three-dimensional (3D) images is crucial for extracting meaningful information impacting basic science and orthopaedic applications. In particular, the mechanical properties of the fibrous microstructures are strongly influenced by their volume fraction, orientation, and diameter. However, determining the 3D fibre orientation and diameter is challenging. In this picture, this thesis aimed at integrating microcomputed tomography (microCT) and image processing approach to identify and enhance microstructural information about biological soft fibrous tissues, including volume and orientation. The overall procedure was first applied on human hamstring tendon and bovine collateral ligament samples. In a first phase specific sample preparations – including either a chemical dehydration, or by 2% of phosphotungstic acid (PTA) in water (H2O) or in 70% ethanol (EtOH) solution – were tested to enhance image contrast of these specific soft tissues. Further, using the scanned data, a novel image processing technique based on 3D Hessian multiscale filter for highlighting fibrous structures was developed to obtain quantitative fibre information. Interestingly, for any strategy of tendon/ligament sample preparation, the proposed approach was adequate for detecting and characterizing fascicle features. The test results showed the fibre arrangement strongly aligned along the main longitudinal direction in the human hamstring tendon more than fibres on the bovine collateral ligament. Moreover, this technique was further applied in order to determine how the human Anterior Cruciate Ligament (ACL) responds to uniaxial loads with respect to increasing values of strain, considering both a healthy tissue and a one under pathological conditions, i.e., acquired from a patient with osteoarthritis. Also in these cases, the integrated approach was valuable and reliable in identifying orientation and size of present fascicles and, thus, through a structural mechanical model - based on specific constitutive law - to estimate the elastic modulus of these tissues. In fact, stress-strain curves were estimated, obtaining a value of elastic modulus of 60.8 MPa and 7.7 MPa for the healthy and pathological ACLs, respectively. In conclusion, a novel contrast enhancement microCT protocol was designed and preliminarily validated for the microstructural analysis of biological soft fibrous tissues. In a peculiar application to ACL, the information obtained with the protocol was used to implement a mechanical model of fibrous tissues, thus estimating the biomechanical behaviour of the healthy and pathological tissues.File | Dimensione | Formato | |
---|---|---|---|
Fatehia_Bushara_Technology for Health_XXXV.pdf
accesso aperto
Dimensione
5.97 MB
Formato
Adobe PDF
|
5.97 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/69234
URN:NBN:IT:UNIBS-69234