Reconstruction of maxillofacial skeleton defects is a surgical challenge, and microvascular reconstruction is the current gold standard. The field of tissue bioengineering has been providing an increasing number of alternative strategies for bone reconstruction. We performed a series of preclinical studies to assess the performance of bioengineered scaffolds in craniofacial bone regeneration. In our pilot study an hydrogel made of polyethylene glycol-chitosan (HyCh) and a core-shell combination of poly(L-lactic acid)/poly(ε-caprolactone) and HyCh (PLA-PCL-HyCh), seeded with different concentrations of human mesenchymal stromal cells (hMSCs) (i.e. 1000, 2000, and 3000 cells/mm3), has been explored in non-critical size mandibular defects in a rabbit model. The bone regenerative properties of the bioengineered scaffolds were analyzed by in vivo radiological examinations and ex vivo radiological, histomorphological, and immunohistochemical analyses. We demonstrate that bone regeneration can be boosted by scaffold- and seeded scaffold-reconstruction, achieving, respectively, 50% and 70% restoration of presurgical bone density in 120 days, compared to 40% restoration seen in spontaneous regeneration. These results helped to establish a baseline reference for further experiments and we started to search for an optimization of the regenerative performance. We tried to optimize the baseline model though the application of an allograft model (i.e. seeding rabbit mesenchymal stromal cells [rMSCs] instead of hMSCs) and though the local administration of BMP-2 (i.e. bioengineered scaffolds seeded with hMSCs, implemented with BMP-2). Unfortunately the experimental results could not overcome the outcome of 70% restoration of presurgical bone density in 120 days. Afterwards our team developed and produced a new hybrid core-shell composite scaffolds in 3D-printed PLA-HyCH with excellent mechanical properties. We introduced a the new composite scaffold in our experiments, testing the possibility of regenerating of critical size defects, but once again we could not obtain a better performance than our reference value. This finding probably was consequence of suboptimal fixation of the scaffolds at level of the surgical defects. Moreover, some ancillary studies were performed in order to clarify some issues of the bone regeneration: 1) the feasibility of the reconstruction of a segmental mandibular defect though a bioresorbable hybrid core-shell composite scaffold was proved with a long follow up (i.e. 3 months) of the animal without any major complication; 2) a valid animal model of mandibular osteoradionecrosis with an excellent correlation between dose and biological damage was developed, but, from the regenerative standpoint, the scaffold-hMSC model could not highly catalyze the bone repair of bone defects in this particular setting; 3) a preliminary investigation focused on the interaction between hMSCs and tumor cells was accomplished, and, from the few data obtained at the moment, no evidence supported the hypothesis that hMSCs could promote tumor growth.
La ricostruzione dei difetti ossei del massiccio facciale rappresenta una sfida chirurgica e attualmente la miglior soluzione, in uso nella pratica clinica, consiste nell’impiego di lembi liberi microchirurgici. Il campo della bioingegneria sta crescendo notevolmente e fornisce alcune alternative alla ricostruzione ossea. Durante il dottorato sono stati condotti una serie di studi preclinici al fine di valutare la performance degli scaffold bioingegnerizzati nella rigenerazione ossea del distretto craniofacciale. Nello studio pilota due tipi di scaffold (un idrogelo costituito da polietilen glicole-chitosano [HyCh] e uno scaffold nato dalla combinazione di acido polilattico, policaprolattone e HyCh [PLA-PCL-HyCh]), seminati con cellule staminali mesenchimali umane (hMSCs) in diverse concentrazioni (i.e. 1000, 2000, and 3000 cells/mm 3 ), sono stati testati per la ricostruzione di difetti mandibolari non critici nel modello animale di coniglio. Le proprietà rigenerative degli scaffold bioingegnerizzati sono state analizzate con studi radiologici in vivo ed analisi radiologiche ed istologiche ex vivo. E’ stato dimostrato che la rigenerazione ossea può essere incrementata significativamente attraverso l’utilizzo di una ricostruzione con scaffold o con scaffold seminato, ottenendo rispettivamente una rigenerazione ossea del 50% e del 70% del sito chirurgico in 120 giorni, confrontata con il 40% che si ottiene con la rigenerazione spontanea. Questi risultati hanno permesso di stabilire un riferimento di base per ulteriori esperimenti volti all’ottimizzazione della performance rigenerativa. E’ stato avviato un primo tentativo di ottimizzare il modello di base con un trapianto allograft di cellule staminali (i.e. rabbit mesenchymal stromal cells [rMSCs] in sostituzione delle hMSCs) e con la somministrazione topica di BMP-2 (i.e. scaffolds seminati con hMSCs a cui si aggiunge BMP-2). Purtroppo i risultati sperimentali così ottenuti non hanno superato il riferimento di base. Studi successivi sono stati dedicati alla progettazione e sviluppo di un nuovo tipo di scaffold composito con architettura core-shell. Tale scaffold grazie alla struttura reticolare del core prodotto mediante stampante 3D presenta notevole versatilità ed eccellenti proprietà meccaniche. Il nuovo scaffold è stato introdotto per testare la possibilità di rigenerare difetti con dimensioni critiche. I risultati ottenuti non sono stati completamente soddisfacenti a causa di problematiche legate al fissaggio subottimale dello scaffold a livello del difetto chirurgico. Infine sono stati eseguiti diversi studi ancillari per fare chiarezza in alcune problematiche della rigenerazione ossea: 1) è stata dimostrata la fattibilità della ricostruzione con scaffold bioriassorbibile di un difetto segmentale di mandibola nel coniglio con un lungo follow up (i.e. 3 months) nessuna complicanza maggiore; 2) è stato sviluppato un valido modello di osteoradionecrosi mandibolare con ottima correlazione dose-effetto biologico anche se, dal punto di vista rigenerativo, lo scaffold seminato con hMSCs non è riuscito a promuovere il processo neo-osteogenetico; 3) è stato condotto uno studio preliminare per investigare l’interazione tra le hMSCs e le cellule tumorali e al momento non sono emerse evidenze che supportino la teoria che le hMSCs possano favorire la crescita tumorale.
BONE REGENERATION OF THE CRANIOFACIAL SKELETON WITH BIOENGINEERED SCAFFOLDS
TABONI, STEFANO
2024
Abstract
Reconstruction of maxillofacial skeleton defects is a surgical challenge, and microvascular reconstruction is the current gold standard. The field of tissue bioengineering has been providing an increasing number of alternative strategies for bone reconstruction. We performed a series of preclinical studies to assess the performance of bioengineered scaffolds in craniofacial bone regeneration. In our pilot study an hydrogel made of polyethylene glycol-chitosan (HyCh) and a core-shell combination of poly(L-lactic acid)/poly(ε-caprolactone) and HyCh (PLA-PCL-HyCh), seeded with different concentrations of human mesenchymal stromal cells (hMSCs) (i.e. 1000, 2000, and 3000 cells/mm3), has been explored in non-critical size mandibular defects in a rabbit model. The bone regenerative properties of the bioengineered scaffolds were analyzed by in vivo radiological examinations and ex vivo radiological, histomorphological, and immunohistochemical analyses. We demonstrate that bone regeneration can be boosted by scaffold- and seeded scaffold-reconstruction, achieving, respectively, 50% and 70% restoration of presurgical bone density in 120 days, compared to 40% restoration seen in spontaneous regeneration. These results helped to establish a baseline reference for further experiments and we started to search for an optimization of the regenerative performance. We tried to optimize the baseline model though the application of an allograft model (i.e. seeding rabbit mesenchymal stromal cells [rMSCs] instead of hMSCs) and though the local administration of BMP-2 (i.e. bioengineered scaffolds seeded with hMSCs, implemented with BMP-2). Unfortunately the experimental results could not overcome the outcome of 70% restoration of presurgical bone density in 120 days. Afterwards our team developed and produced a new hybrid core-shell composite scaffolds in 3D-printed PLA-HyCH with excellent mechanical properties. We introduced a the new composite scaffold in our experiments, testing the possibility of regenerating of critical size defects, but once again we could not obtain a better performance than our reference value. This finding probably was consequence of suboptimal fixation of the scaffolds at level of the surgical defects. Moreover, some ancillary studies were performed in order to clarify some issues of the bone regeneration: 1) the feasibility of the reconstruction of a segmental mandibular defect though a bioresorbable hybrid core-shell composite scaffold was proved with a long follow up (i.e. 3 months) of the animal without any major complication; 2) a valid animal model of mandibular osteoradionecrosis with an excellent correlation between dose and biological damage was developed, but, from the regenerative standpoint, the scaffold-hMSC model could not highly catalyze the bone repair of bone defects in this particular setting; 3) a preliminary investigation focused on the interaction between hMSCs and tumor cells was accomplished, and, from the few data obtained at the moment, no evidence supported the hypothesis that hMSCs could promote tumor growth.File | Dimensione | Formato | |
---|---|---|---|
Thesis PhD ST DEF.pdf
accesso aperto
Dimensione
22.05 MB
Formato
Adobe PDF
|
22.05 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/70191
URN:NBN:IT:UNIBS-70191