Learning to spot analogies and differences within/across visual categories is an arguably powerful approach in machine learning and pattern recognition which is directly inspired by human cognition. In this thesis, we investigate a variety of approaches which are primarily driven by correlation and tackle several computer vision applications.

Learning by correlation for computer vision applications: from Kernel methods to deep learning

CAVAZZA, JACOPO
2018

Abstract

Learning to spot analogies and differences within/across visual categories is an arguably powerful approach in machine learning and pattern recognition which is directly inspired by human cognition. In this thesis, we investigate a variety of approaches which are primarily driven by correlation and tackle several computer vision applications.
28-mar-2018
Inglese
MURINO, VITTORIO
MARCHESE, MARIO
PALUMBO, MAURO
Università degli studi di Genova
File in questo prodotto:
File Dimensione Formato  
phdunige_3368994.pdf

accesso aperto

Licenza: Tutti i diritti riservati
Dimensione 5.57 MB
Formato Adobe PDF
5.57 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/71159
Il codice NBN di questa tesi è URN:NBN:IT:UNIGE-71159